966 resultados para Pasture and forests


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological nitrogen fixation by rhizobium-legume symbiosis represents one of the most important nitrogen sources for plants and depends strongly on the symbiotic efficiency of the rhizobium strain. This study evaluated the symbiotic capacity of rhizobial isolates from calopo (CALOPOGONIUM MUCUNOIDES) taken from an agrisoil under BRACHIARIA DECUMBENS pasture, sabiá (MIMOSA CAESALPINIIFOLIA) plantations and Atlantic Forest areas of the Dry Forest Zone of Pernambuco. A total of 1,575 isolates were obtained from 398 groups. A single random isolate of each group was authenticated, in randomized blocks with two replications. Each plant was inoculated with 1 mL of a bacterial broth, containing an estimated population of 10(8) rhizobial cells mL-1. Forty-five days after inoculation, the plants were harvested, separated into shoots, roots and nodules, oven-dried to constant mass, and weighed. Next, the symbiotic capability was tested with 1.5 kg of an autoclaved sand:vermiculite (1:1) mixture in polyethylene bags. The treatments consisted of 122 authenticated isolates, selected based on the shoot dry matter, five uninoculated controls (treated with 0, 50, 100, 150, or 200 kg ha-1 N) and a control inoculated with SEMIA 6152 (=BR1602), a strain of BRADYRHIZOBIUM JAPONICUM The test was performed as described above. The shoot dry matter of the plants inoculated with the most effective isolates did not differ from that of plants treated with 150 kg ha-1 N. Shoot dry matter was positively correlated with all other variables. The proportion of effective isolates was highest among isolates from SABIÁ forests. There was great variation in nodule dry weight, as well as in N contents and total N.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in land use and management can affect the dynamic equilibrium of soil systems and induce chemical and mineralogical alterations. This study was based on two long-term experiments (10 and 27 years) to evaluate soil used for no-tillage maize cultivation, with and without poultry litter application (NTPL and NTM), and with grazed native pasture fertilized with cattle droppings (GrP), on the chemical and mineralogical characteristics of a Rhodic Paleudult in Southern Brazil, in comparison with the same soil under native grassland (NGr). In the four treatments, soil was sampled from the 0.0-2.5 and 2.5-5.0 cm layers. In the air-dried fine soil (ADFS) fraction (∅ < 2 mm), chemical characteristics of solid and liquid phases and the specific surface area (SSA) were evaluated. The clay fraction (∅ < 0.002 mm) in the 0.0-2.5 cm layer was analyzed by X-ray diffraction (XRD) after treatments for identification and characterization of 2:1 clay minerals. Animal waste application increased the total organic C concentration (COT) and specific surface area (SSA) in the 0.0-2.5 cm layer. In comparison to NGr, poultry litter application (NTPL) increased the concentrations of Ca and CECpH7, while cattle droppings (GrP) increased the P and K concentrations. In the soil solution, the concentration of dissolved organic C was positively related with COT levels. With regard to NGr, the soil use with crops (NTM and NTPL) had practically no effect on the chemical elements in solution. On the other hand, the concentrations of most chemical elements in solution were higher in GrP, especially of Fe, Al and Si. The Fe and Al concentrations in the soil iron oxides were lower, indicating reductive/complexive dissolution of crystalline forms. The X-ray diffraction (XRD) patterns of clay in the GrP environment showed a decrease in intensity and reflection area of the 2:1 clay minerals. This fact, along with the intensified Al and Si activity in soil solution indicate dissolution of clay minerals in soil under cattle-grazed pasture fertilized with animal droppings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epigeous termite mounds are frequently observed in pasture areas, but the processes regulating their population dynamics are poorly known. This study evaluated epigeous termite mounds in cultivated grasslands used as pastures, assessing their spatial distribution by means of geostatistics and evaluating their vitality. The study was conducted in the Cerrado biome in the municipality of Rio Brilhante, Mato Grosso do Sul, Brazil. In two pasture areas (Pasture 1 and Pasture 2), epigeous mounds (nests) were georeferenced and analyzed for height, circumference and vitality (inhabited or not). The area occupied by the mounds was calculated and termite specimens were collected for taxonomic identification. The spatial distribution pattern of the mounds was analyzed with geostatistical procedures. In both pasture areas, all epigeous mounds were built by the same species, Cornitermes cumulans. The mean number of mounds per hectare was 68 in Pasture 1 and 127 in Pasture 2, representing 0.4 and 1 % of the entire area, respectively. A large majority of the mounds were active (vitality), 91 % in Pasture 1 and 84 % in Pasture 2. A “pure nugget effect” was observed in the semivariograms of height and nest circumference in both pastures reflecting randomized spatial distribution and confirming that the distribution of termite mounds in pastures had a non-standard distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological N fixation in forage legumes is an important alternative to reduce pasture degradation, and is strongly influenced by the inoculant symbiotic capability. This paper evaluates the effectiveness of Calopo (Calopogonium mucunoides) rhizobial isolated from soil under three vegetation covers of an Argissolo Vermelho-Amarelo of the Dry Forest Zone of Pernambuco. An experiment was conducted evaluating 25 isolates, aside from 5 uninoculated controls with 0; 309; 60; 90 and 120 kg ha-1 N, and a treatment inoculated with the SEMIA 6152 strain. The first cut was performed 45 days after inoculation and a second and third cut after 45-day-intervals. Shoot N content was quantified at all cuts. Shoot dry mass was affected by N rates at all cuts. Shoot dry mass increased from the first to the second cut in inoculated plants. There was no difference between rhizobial isolates from the different plant covers for any of the variables. Most variables were significantly and positively correlated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Livestock urine and dung are important components of the N cycle in pastures, but little information on its effect on soil nitrous oxide (N2O) emissions is available. We conducted a short-term (39-day) trial to quantify the direct N2O-N emissions from sheep excreta on an experimental area of ryegrass pasture growing on a Typic Paleudult in southern Brazil. Four rates of urine-N (161, 242, 323, and 403 kg ha-1 N) and one of dung-N (13 kg ha-1 N) were applied, as well as a control plot receiving no excreta. The N2O-N emission factor (EF = % of added N released as N2O-N) for urine and dung was calculated, taking into account the N2O fluxes in the field, over a period of 39 days. The EF value of the urine and dung was used to estimate the emissions of N2O-N over a 90-day period of pasture in the winter under two grazing intensities (2.5 or 5.0 times the herbage intake potential of grazing lambs). The soil N2O-N fluxes ranged from 4 to 353 µg m-2h-1. The highest N2O-N fluxes occurred 16 days after application of urine and dung, when the highest soil nitrate content was also recorded and the water-filled pore space exceeded 60 %. The mean EF for urine was 0.25 % of applied N, much higher than that for dung (0.06 %). We found that N2O-N emissions for the 90-day winter pasture period were 0.54 kg ha-1 for low grazing intensity and 0.62 kg ha-1 for moderate grazing intensity. Comparison of the two forms of excreta show that urine was the main contributor to N2O-N emissions (mean of 36 %), whereas dung was responsible for less than 0.1 % of total soil N2O-N emissions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Water erosion is one of the main factors driving soil degradation, which has large economic and environmental impacts. Agricultural production systems that are able to provide soil and water conservation are of crucial importance in achieving more sustainable use of natural resources, such as soil and water. The aim of this study was to evaluate soil and water losses in different integrated production systems under natural rainfall. Experimental plots under six different land use and cover systems were established in an experimental field of Embrapa Agrossilvipastoril in Sinop, state of Mato Grosso, Brazil, in a Latossolo Vermelho-Amarelo Distrófico (Udox) with clayey texture. The treatments consisted of perennial pasture (PAS), crop-forest integration (CFI), eucalyptus plantation (EUC), soybean and corn crop succession (CRP), no ground cover (NGC), and forest (FRS). Soil losses in the treatments studied were below the soil loss limits (11.1 Mg ha-1 yr-1), with the exception of the plot under bare soil (NGC), which exhibited soil losses 30 % over the tolerance limit. Water losses on NGC, EUC, CRP, PAS, CFI and FRS were 33.8, 2.9, 2.4, 1.7, 2.4, and 0.5 % of the total rainfall during the period of study, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report contains the results of the Park and Recreation Enhancement Study Committee on the current and future needs for artificial and natural lakes, state parks, forests, and recreational areas in Iowa and make recommendations on the development of the new facilities and the restoration and management of current facilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The correlation between the species composition of pasture communities and soil properties in Plana de Vic has been studied using two multivariate methods, Correspondence Analysis (CA) for the vegetation data and Principal Component Analysis (PCA) for the soil data. To analyse the pastures, we took 144 vegetation relevés (comprising 201 species) that have been classified into 10 phytocoenological communities elsewhere. Most of these communities are almost entirely built up by perennials, ranging from xerophilous, clearly Mediterranean, to mesophilous, related to medium-European pastures, but a few occurring in shallow soils are dominated by therophytes. As for the soil properties, we analysed texture, pH, depth, bulk density, organic matter, C/N ratio and the carbonates content of 25 samples, correspondingto representative relevés of the communities studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth and biomass allocation responses of the tropical forage grasses Brachiaria brizantha cv. Marandu and B. humidicola were compared for plants grown outdoors, in pots, in full sunlight and those shaded to 30% of full sunlight over a 30day period. The objective was to evaluate the acclimation capacity of these species to low light. Both species were able to quickly develop phenotypic adjustments in response to low light. Specific leaf area and leaf area ratio were higher for low-light plants during the entire experimental period. Low-light plants allocated significantly less biomass to root and more to leaf tissue than high-light plants. However, the biomass allocation pattern to culms was different for the two species under low light: it increased in B. brizantha, but decreased in B. humidicola, probably as a reflection of the growth habits of these species. Relative growth rate and tillering were higher in high-light plants. Leaf elongation rate was significantly increased on both species under low light; however, the difference between treatments was higher in B. brizantha. These results are discussed in relation to the pasture management implications.