951 resultados para Paraná sedimentary basin
Resumo:
Through generalizing the thermal field characteristics in gas hydrates distribution area in the world, the favorable thermal conditions for gas hydrates in the South China Sea are analyzed firstly. On the basis of above analysis, focused on the gas hydrates stability zone (GHSZ), the dissertation initiated the gas hydrates studies with geothermal methods in the South China Sea which will provide useful information for gas hydrates resource exploration and evaluation in the future. On the basis of study on hydrates phase equilibrium and the GHSZ affecting factors, the potential planar distribution of gas hydrates is determined by studying the temperature and pressure conditions in the sea bottom with different water depth, and the thickness of GHSZ is attained by solving the hydrates phase boundary curve equation and geothermal gradient curve equation. The result shows that, if the chemical composition of hydrocarbons contains methane only and the salt content of water is 3.5%, hydrates can form and keep stable at sea bottom at water depth not less than 550m, and the thickness of GHSZ is more than 200m in Xisha Through, Southeastern area of Dongsha Islands, Southwestern basin of Taiwan Island, northern area of Nansha Trough. The GHSZ is thicker with heat flow, geothermal gradient, and thermal conductivity decreasing, and with water depth increasing. Geothermal field simulating also attains the base of GHSZ in Xisha through, which is less than the depth of BSR. Although the present T-P conditions is not the most favorable for gas hydrates through 6Ma history, gas hydrates are still profitable in Xisha Through, Southeastern area of Dongsha Islands, Southwestern basin of Taiwan Island, Luzon Trough and northern area of Nansha Trough by systemic study on the sedimentary and structural characteristics, the conditions of T-P and natural gas source, considering geochemical and geophysical indications found in the South China Sea.
Resumo:
This dissertation focuses on the basin geothermal history, tectonothermal evolution and the relationship between geothermal field evolution and hydrocarbon generation. Based on the research of present-day geothermal field, geothermal history of Eastern Subdepression of Liaohe Basin was reconstructed with available data from drillings, loggings, seismic cross-sections, BHTs and thermal indicators. 12 heat flow density values were calculated. Ranging from 45.7 mW/m~2 to 70.0 mW/m~2, the mean value of these determinations exhibits 58.0(±5.83mW/m~22). The heat flow density in the uplift and ramp is greater than that in the sag. The main factors affecting the heat flow density are the morphostructure of basement and thickness of sedimentary cover. The Subdepression experienced a much higher heat flow period from 43 Ma to about 25 Ma. The heat flow increased gradually from Sha3 stage to Dongying stage, and reached the peak at the late of Dongying stage, then cooled down. Structural subsidence analysis shows that the subsidence of Eastern Subdepression can be divided into two phases: earlier (25-43Ma) initial (rift) and late (since 25Ma) thermal subsidence. The lower present-day heat flow and the higher palaeo-heat flow corresponding to structural subsidence stage as well as the typical rift subsidence style in Eastern Subdepression provide with some insights to the tectonic-thermal evolution of the basin. The source rocks of Sha3 member began to generate oil in the Shal stage, and entered oil-window at the late of Dongying stage. The source rocks of Shal began to generate oil at the late of Dongying stage, and being at the stage of lower maturation-maturation now. Most of Dongying source rocks are not mature now. The late of Dongying stage is the critical time for the oil system.
Resumo:
The Western Qinling Orogenie belt in the Taibai-Fengxian and Xihe-Lixian areas can be subdivided into three units structurally from north to south, which are the island-arc, forearc basin and accretionary wedge, respectively. The forearc basin developed in the Late Paleozoic mainly controls sedimentation and some larger lead-zinc and gold deposits in the western Qinling. Stratigraphically, the island arc is dissected into the Liziyuan Group, the Danfeng Group and the Luohansi Group. The metavolcanic rocks include basic, intermediate and acidic rocks, and their geochemistry demonstrates that these igneous rocks generated in an island arc. Where, the basalts are subalkaline series charactered by low-medium potassium, with enriched LREE, negative Eu anomaly, and positive Nd anomaly. Cr-content of volcanic rocks is 2-3 times higher than that of island arc tholeiite all over the world. In addition, the lightly metamorphosed accretionary wedge in the areas of Huixian, Chengxian, Liuba and Shiqun is dominated by terrigenous sediments with carbonatite, chert, mafic and volcanic rocks. The age of the wedge is the Late Palaeozoic to the Trassic, while previous work suggested that it is the Silurian. The Upper Paleozoic between the island arc belt and accretionary wedge are mainly the sediments filled in the fore arc basin. The fillings in the forearc basin were subdivided into the Dacaiotan Group, the Tieshan Group, the Shujiaba Group and the Xihanshui Group, previously. They outcropped along the southern margins of the Liziyuan Group. The Dacaotan Group, the Upper Devonian, is close to the island arc complex, and composed of a suite of red and gray-green thick and coarse terrestrial elastics. The Shujiaba Group, the Mid-Upper Devonian, is located in the middle of the basin, is mainly fine-grained elastics with a few intercalations of limestone. The Xihanshui Group, which distributes in the southern of the basin, is mainly slates, phyllites and sandstones with carbonatite and reef blocks. The Tieshan Group, the Upper Devonian, just outcrops in the southwest of the basin, is carbonatite and clastic rocks, and deposited in the shallow -sea environment. The faults in the basin are mainly NW trend. The sedimentary characteristics, slump folds, biological assemblages in both sides of and within those faults demonstrate that they were syn-sedimentary faults with multi-period activities. They separated the forearc basin into several sub-basins, which imbricate in the background of a forearc basin with sedimentary characteristics of the piggyback basin. The deep hydrothermal fluid erupted along the syn-sedimentary faults, supported nutrition and energy for the reef, and resulted in hydrothermal-sedimentary rocks, reef and lead-zinc deposits along these faults. The sedimentary facies in the basin varies from the continental slope alluvial fan, to shallow-sea reef facies, and then to deep-water from north to south, which implies that there was a continental slope in the Devonian in the west Qinling. The strata overlap to north and to east respectively. Additionally, the coeval sedimentary facies in north and south are significantly different. The elastics become more and more coarser to north in the basin as well as upward coarsing. These features indicate prograding fillings followed by overlaps of the different fans underwater. The paleocurrent analyses show that the forearc basin is composed of thrust-ramp-basins and deep-water basins. The provenance of the fillings in the basin is the island arc in the north. The lead-zinc deposits were synchronous with the Xihanshui Group in the early stage of development of the forearc basin. They were strongly constrained by syn-sedimentary faults and then modified by the hydrothermal fluids. The gold deposits distributed in the north of the basin resulted from the tectonic activities and magmatism in the later stage of the basin evolution, and occurred at the top of the lead-zinc deposits spatially. The scales of lead-zinc deposits in the south of the basin are larger than that of the gold-deposits. The Pb-Zn deposits in the west of the basin are larger than those in the east, while the Gold deposits in the west of the basin are smaller than those in the east. Mineralizing ages of these deposits become younger and younger to west.
Resumo:
Qianmiqiao buried hill, which is a high-yield burial hill pool, was discovered at Dagang oilfield in 1998. To employ the integrated geological and geophysical research at Qianmiqiao area, it is very valuable and meaningful for the petroleum exploration of Bohai Bay Basin and even the whole country. Based on the previous results, this paper is carried out from the research on Huanghua depression, following the law, i.e. the deep part constrains the shallow, the regional constrains the local, takes the geophysical research in Qianmiqiao oilfield, discusses the formation history of burial hills, burial history, thermal history, the generated and expelling history of hydrocarbon, and migration characteristics, probes into the formation of burial hill pool. This paper uses the gravity and magnetic methods which are based on potential field, with natural sources, configures the inner structure of the earth according to the difference in the density and magnetism of the rock. The geophysical characteristics of Dagang oil field is that it is an area with positive Buge gravity anomal. The upheaval of Moho boundary is in mirror symmetry with the depression of the basin's basement. The positive and negative anomaly distributein axis symmetry, and the orientation is NNE. The thickness of the crust gradually reduces from west to east, from land to sea. The depth gradient strip of Curie surface is similar to Moho boundary, whereas their local buried depth is different. Local fractures imply that the orientation of base rock fractures is NNE-NE, and the base rock is intersected by the fractures of the same/ later term, whose orientation is NW, so the base rock likes rhombic mosaic. The results of tomography show that there exists significant asymmetry in vertical and horizontal direction in the velocity configuration of Huanghua depression. From Dezhou to Tianjin, there exits high-speed block, which extends from south to north. The bottom of this high-speed block is in good agreement with the depth of Moho boundary. Hence we can conclude that the high-speed block is actually the crystal basement. According to seismic data, well data and outcrop data, Huanghua depression can be divided into four structure layers, i.e. Pi,2-T, Ji,2-K, E, N-Q. Qianmiqiao burial hills undergo many tectonic movement, where reverse faults in developed in inner burial hill from Indosinian stage to Yanshanian stage, the normal faults extended in Himalayan stage. Under the influence of tectonic movements, the burial hills show three layers, i.e. the reverse rushing faults in buried hills, paleo-residual hill, and extended horst block. The evolution of burial hills can be divided into four stages: steady raising period from Calenonian to early Hercynian, rushing brake drape period from Indosinian to middle Yanshanian, block tilting period in early Tertiary, and heating depression period from late Tertiary to Quaternary. The basin modeling softwares BasinMod 1-D and Basin 2-D, which are made by PRA corporation, are used in this paper, according to the requirement, corresponding geological model is designed. And we model the burial history, thermal history, hydrocarbon generation and hydrocarbon expelling history of Qianmiqiao area. The results show that present bury depth is the deepest in the geological history, the sedimentary rate of Tertiary is highest and its rising rate of temperature rate is higher. During sedimentary history, there is no large erosion, and in the Tertiary, the deeper sediment was deposited in large space, therefore it is in favor of the conservation and transformation of oil and gas. The thermal research shows that the heat primarily comes from basement of the basin, present geotherm is the highest temperature in the geological history. Major source rock is the strata of ES3, whose organic is abundant, good-typed, maturative and of high-expulsive efficiency. The organic evolution of source rock of O has come to the overmature stage, the evolving time is long and the source rock can be easily destroyed. Therefore it is more difficult for the O formation source rock to form the huge accumulation of oil and gas than Es3 formation. In the research of oil assembling, we first calculated the characteristics of the fluid pressure of single well, then analyzed the distribution of the surplus fluid pressure of each formation and profile, and probe the first hydrocarbon migration situation and the distribution of pressure system of buried hill pool. In every formation, the pressure system of each burial hill has its own characteristics, e.g. high pressure or low pressure. In the research of secondary migration, the fluid potential is calculated while the relative low potential area is figured out. In Qianmiqiao area, the west margin faults have the low potential, and hence is the favorable reconnoiter belt.
Resumo:
This dissertation tries to combine the new theories of high-resolution sequence stratigraphy and reservoir architecture with fine sedimentology to form a integral theory system -"high-resolution sequence sedimentology", which can be applied widely ranging from the early petroleum exploration to the tertiary recovery stage in marine and terrestrial basin. So the west slope area in south of Songliao basin, in which, early-fine exploration have been developed, and Xingnan area of Daqing placantictine in high water-bearing and tertiary recovery stage, are selected as target areas to research and analyze. By applying high-resolution sequence stratigraphy theory as well as analysis of source area-facies, the west slope area has been divided into two source areas and three drainage systems and the following conclusions have been drawn: three high values sandstone areas, two sandstone pinchout zones and one stratigraphic pinchout overlap; the facies between Baicheng-Tongyu drainage system is frist ascertained as large-scale argillaceous filled plain facies; fine-grained braided channel-delta depositional system has been found; plane sedimentary facies and microfacies maps of different-scale sequence have been completed, and then twenty-eight lithologic traps have been detected in the east of Taobao-Zhenlai reverse fault zone; In no exploration area of the west, large-scale stratigraiphic overlap heavy oil reservoirs has first been found, which has become an important prograss. In Xingnan area, in the view of high-resolution sequence stratigraphy, the surface of unconformity (the bottom of SSC13) in P I group has been identified, and the following method and technique have been advanced: the division and correlation methods of short-scale base-level cycle sequence (SSC); the comprehensive research methods of SSC plane microfacies; the division technique of hierarchy and type of flow unit, the origin of large-scale composite sandbody and flow unit; And ,on the basis of these, 103 monosandstone bodies and 87 flow units of the third levels have been identified, and four levels of flow units model of five sandstone-bodies types have been established. Because it is a very difficult task all over the world to research architecture in subsurface monosandstone body, brings forward a series of techniques as follows: technique of researching architecture of thin interbed in subsurface monosandstone body; classification, type and liquid-resisting mechanism of thin interbed; multiple-remember vertical subsequence model of remaining oil in monosadstone body. Models of heterogeneity and architecture of thin interbed in five types of monosandstone body have been established. Applying these techniques, type and distribution of remaining oil in different types of monosandstone bodies have been predicated.
Resumo:
These are two parts included in this report. In the first part, the zonation of the complexes in its series, lithofacies, the depth of magma source and chambers is discussed in detailed for the first time based on the new data of petrol-chemistry, isotopes, tectono-magma activity of Mesozoic volcano-plutonic complexes in the southern Great Hinggan Mts. Then, the genetic model of the zonality, double overlapped layer system, is proposed. The main conclusions are presented as follows: The Mesozoic volcanic-plutonic complexes in the southern Great Hinggan were formed by four stages of magma activity on the base of the subduction system formed in late Paleozoic. The Mesozoic magmatic activity began in Meso-Jurassic Epoch, flourished in late Jurassic Epoch, and declined in early Cretaceous Epoch. The complexes consist dominantly of acidic rocks with substantial intermediate rocks and a few mefic ones include the series of calc alkaline, high potassium calc alkaline, shoshonite, and a few alkaline. Most of those rocks are characterized by high potassium. The volcano-plutonic complexes is characterized by zonality, and can be divided mainly into there zones. The west zone, located in northwestern side of gneiss zone in Great Xinggan mountains, are dominated of high potassium basalts and basaltic andesite. The middle zone lies on the southeast side of the Proterozoic gneiss zone, and its southeast margin is along Huangganliang, Wushijiazi, and Baitazi. It composed of dominatly calc-alkaline, high potassium calc-alkaline rocks, deep granite and extrusive rhyolite. The east zone, occurring along Kesheketong Qi-Balinyou Qi-Balinzuo Qi, is dominated of shoshonite. In generally, southeastward from the Proterozoic gneiss zone, the Mesozoic plutons show the zones-mica granitites zone, hornblende-mica granitite zone, mica-hornblende granitite zone; the volcanic rocks also display the zones of calc alkaline-high potassium calc alkaline and shoshonites. In the same space, the late Paleozoic plutons also display the same zonality, which zones are combined of binary granite, granodiorite, quartz diorite and diorite southeast wards from the gneiss. Meso-Jurassic Epoch granite plutons almost distribute in the middle zone on the whole. Whereas late Jurassic Epoch volcanic rocks distribute in the west and east zone. This distribution of the volcano-plutonic complexes reveals that the middle zone was uplifted more intensively then the other zones in Meso-Jurassic and late Jurassic Epoches. Whole rock Rb-Sr isochron ages of the high potassium calc-alkaline volcanic rocks in the west zone, the calc-alkaline and high potassium calc-alkaline granite the middle zone, shoshonite in the east zone are 136Ma, 175Ma and 154Ma, respectively. The alkaline rocks close to the shoshonite zone is 143Ma and 126Ma. The isochron ages are comparable well with the K-Ar ages of the rocks obtained previously by other researchers. The compositions of Sr ans Nd isotopes suggest that the source of Mesozoic volcanic-plutonic complexes in Great Hinggan Mts. is mostly Paleo-Asia oceanic volcanic-sedimentary rocks, which probably was mixed by antiquated gneiss. The tectonic setting for Mesozoic magmatism was subductive continental margin. But this it was not directly formed by present west Pacific subduction. It actully was the re-working of the Paleozoic subduction system( which was formed during the Paleo-Asia ocean shortening) controlled by west Pacific subduction. For this reason, Although Great Hinggan Mts. is far away from west Pacific subduction zone, its volcanic arc still occurred echoing to the volcanic activities of east China, it, but the variation trend of potassium content in volcano-plutonic complexes of Great Hinggan is just reverse to ones of west Pacific. The primitive magmas occurred in the southern Great Hinggan Mts. Include high-potassium calc-alkaline basalt, high potassium calc-alkaline rhyolite, high potassium rhyolite, non-Eu negative anomaly trachy-rhyolite et al. Therefore, all of primitive magmas are either mafic or acid, and most of intermediate rocks occurring in the area are the products of Mesozoic acid magma contaminated by the Paleozoic volcanic- sedimentary rocks. The depth of those primitive magma sources and chambers gradually increase from northwest to southeast. This suggests that Paleozoic subduction still controlled the Mesozoic magmatism. In summary, the lithosphere tectonic system of the southern Great Hinggan Mts. controlling Mesozoic magmatism is a double overlapped layer system developing from Paleozoic subduction system. For this reason, the depth of crust of the southern Great Hinggan Mts. is thicker than that of its two sides, and consequently it causes regional negative gravity abnormity. The second part of this report shows the prolongation of the research work carried on in my doctor's period. Author presents new data about Rb-Sr and Sm-Nd isotopic compositions and ages, geochamical features, genesis mineralogy and ore deposit geology of the volcanic rocks in Kunyang rift. On the base of the substantial work, author presents a prospect of copper bearing magnetite ore deposit. The most important conclusions are as follows: 1. It is proved that all of these carbonatites controlled by a ringing structure system in Wuding-Lufeng basin in the central Yunnan were formed in the Mesoproterozoic period. Two stages could be identified as follows: in the first stage, carbonatitic volcanic rocks, such as lavas(Sm-Nd, 1685Ma), basaltic porphyrite dykes(Sm-Nd, 1645Ma), pyroclastic rocks and volcaniclastic sedimentary rocks, formed in the outer ring; in the second stage, carbonatitic breccias and dykes(Rb-Sr, 1048 Ma) did in the middle ring. The metamorphic age of the carbonatitic lavas (Rb-Sr, 893 Ma) in the outer ring was determined. The magma of carbonatitic volcanic rocks derived mainly form enriched mantle whose basement is depleted mantle that had been metasomated by mantle fluid and contaminated by Archaean lower crust. Carbonatitic spheres were discovered in ore bearing layers in Lishi copper mining in Yimen recently, which formed in calcite carbonatitic magma extrusion. This discovery indicates that the formation of copper ore deposit genesis relates to carbonatitic volcanic activity. The iron and copper ore deposits occurring in carbonatitic volcanic- sedimentary rocks in Kunyang rift results from carbonatitic magmatism. Author calls this kind of ore deposits as subaqueous carbonatitic iron-copper deposit. The magnetic anomaly area in the north of Lishi copper mining in Yimen was a depression more lower than its circumference. Iron and copper ores occurrig on the margin of the magnetic anomaly are volcanic hydrothermal deposit. The magnetic body causing the magnetic anomaly must be magnetite ore. Because the anomaly area is wide, it can be sure that there is a large insidious ore deposit embedding there.
Resumo:
With the development of petroleum exploration, subtle reservoir has become the main exploration object in Dongying Depression, which requires some new technologies and methods to further reveal the geological characteristics in step with the mature exploration stage. In this paper, on the references to the studies of petroleum system and multiple oil-gas accumulation belt with flexible maneuverability, and the application of systematic theory, the concept of reservoir assemblage is initially defined as "the association of active source rock(s) and hydrocarbon reservoir(s) that are genetically related, with the bridge of pathway system in an oil and gas bearing basin". Compared with the theories of petroleum system and multiple oil-gas accumulation belts, it emphasizes on the processes of petroleum migration and accumulation and the correlation among active source rock, trapped hydrocarbon and migration pathway, and has been confirmed to be more suitably applied to high maturely explored basin. In the first study of this paper, sequence stratigraphy and subtle analytical technology of source rock have been employed to find that two categories of source rock with their characteristic types of organic matter and substantial states occurred in Dongying Depression. The first category, consisting of the oil shales within the third-order sequences of lacustrine expanding system tracts in the upper interval of the fourth Member of Shahejie Formation and both in the middle and lower intervals of the third Member of Shahejie Formation, is featured with the highest abundance of total organic matter (TOC) and the strongest abilities of hydrocarbon generation and expulsion, which is classified into the standard of good hydrocarbon source rock. Exploration assessment confirmed that about 70-80% of hydrocarbon in Dongying Depression came from this set of source rock for which the low sedimentary rate and strong oxygen-free environment would play the key role during its generation. The second category, composed of organic matter of dark mudstone in high stand system tracts in the upper and middle intervals of the third Member of Shahejie Formation, has been characterized by low content of total organic matter which mostly dispersedly distributes, and formed in the pre-delta to delta front environments. In classification, it belongs to the ordinary standard of source rocks. In the second research part, through the studies of high frequency sequence stratigraphy, fault geometry and active history combining with geochemistry of fluid inclusion and nitrogen compound and simulation test of hydrocarbon migration and accumulation, the faults have been thought to be the principal conduits, and the sandy bodies and unconformities might played the complementary pathways for hydrocarbon migration and accumulation in Dongying Depression of the continental faulted basin. Therefore, the fault activities may mainly constrain on the development of hydrocarbon pathways in space and time. Even more, using homogenization temperatures of fluid inclusion in digenetic minerals, three critical moments for hydrocarbon accumulation have been determined as well in Dongying Depression, which happened during the late stage of Dongying Formation (Ed), the early stage of Guantao Formation (Nig) and the early stage of Minghuazhen Formation (Nim), respectively. Comparatively, the last stage is looked as the main forming-reservoir period, which has also been supported by the results of geochemical analysis and simulation experiments of hydrocarbon generation and expulsion. Clearly, the times of hydrocarbon migration and accumulation are consistent with those of the fault activities in Dongying Depression, which indicate that tectonic activities would control the forming-reservoir. A conceptual model of faulting-episodic expulsion coupled with episodic forming-reservoir has then been established in this study. In the third part of this paper, some focusing areas were selected for the fine descriptions of pathway distribution and forming-reservoir, which has given four types of reservoir assemblage in terms of the main pathway and its correlation with the reservoir and trap: (1) mainly consisted of sandy bodies; (2) mainly consisted of faults; (3) mainly consisted of unconformities; and (4) their complex with two or three types of pathways. This classified criteria has also been applied to access the risk of some prospected traps in Dongying Depression. Finally, through the application of reservoir assemblage integrated with pathway distribution to all the prospective targets in Dongying Depression, the new favorably hydrocarbon accumulated belts have been figured out, and more subtle reservoirs have also been found. For examples, during 2000 and 2002, in the mature exploration areas, such as Liangjialou and Shengtuo structural closures etc., newly proved reserves were 2274 * 104t, and forecasted oil reserves 5660-5860xl04t; and in the predicted favorable areas, newly additional controlled oil reserves was 3355xl04t. Besides those, many other favorable exploration areas need to be further appraised.
Resumo:
Ordos basin with profuse coal, petroleum, natural gas and others mineral resources create the comprehensiveness notice of earthling, and became one of studying hotspots for China and foreign countries geology, petroleum and natural gas geology's workman. Late years, having found commercial value of large middle type gas pools in the upper Palaeozoic group, which have exhibited a very good foreground for gas exploring and exploitation. Through the new gas exploring headway and the exploring course, the east of the basin should regard Ordovician weathering crust in the upper Palaeozoic group, tide flat and barrier-lagoon, deltaic deposit system in the lower Palaeozoic group as the major exploration and research emphasis. Furthermore, it has been found that much gas showed wells, which has gain quantitative industry gas flow wells, especially the new assessment invigorative harvest, and bode that the east of the Ordos basin possess major exploring potential. In regional tectonic, the research region mainly lay in the Yishan incline, and the east part involved the west part of Jinxi warping belt. In tectonic and sedimentary evolution, it had inherited the characteristic of whole basin. From Latepaleozoic to triassic epoch, it developed gradational the transition of sedimentary that changed from sea to land, and from river to lake.
Resumo:
The bedding sequences, based on the results from others, have been constructed by geological researches. Furthermore, the reservoir, gas-bearing characteristics and reservoir-blanket association have been increasingly understudied by the geological and seismic studies as well as the log data. The deep dynamics for the formation and development of Shangdu basin resulted from complicated fault system and its continued action have been obtained. The studies on the reservoir condition reveal that the mantle-derived magmatism provided the materials for the CO_2 gas reservoir after Paleogene Period and the huge regional fault not only control the evolution of basin and sedimentary but also pay a role as a passage of the CO_2. The sandstone of river course formed in Paleogene System, with very good reservoir condition, are widely developed in the study area. The blanket with good condition is composed by the basalt in Hannuoba Formation and lake facies shale of Shangdou Formation. Local structures and good encirclement are resulted from the different sedimentary environment and later differential sagging. All statements above demonstrate that there is a very good pool-forming condition for the CO_2. In addition, the high abundance of H_2 recognized during drill exploration are also of significance.More than 30 inorganic CO_2 gas reservoirs have been determined during the exploration for the oil-bearing basins in the eastern China, which are developed along the two sides of Tanlu Fault or within it. In which the CO_2 gas reservoir in Shangdou basin is an inorganic gas reservoir far away from Tanlu Fault. Thus the determination of the CO_2 gas reservoir in Shangdou basin is significant for sciences due to the first exploration for the inorganic CO_2 gas reservoir in our country. The geophysical exploration carried on the CO_2 gas reservoir is benefited for the research of prospecting techniques of CO_2 reservoir.
Resumo:
The research area of this paper covers the maximum exploration projects of CNPC, including Blocks 1/2/4 and Block 6 of the Muglad basin and the Melut basin in Bocks 3/7 in Sudan. Based on the study of the evolution history of the Central African Shear Zone (CASZ), structural styles and filling characteristics of the rift basins, it is put forward that the rift basins in Sudan are typical passive rift basins undergoing the strike-slip, extension, compression and inversion since the Cretaceous. The three-stage rift basins overlapped obliquely. The extension and rifting during the Early Cretaceous is 50-70% of the total extension. The features of the passive rift basins decided that there is a single sedimentary cycle and one set of active source rocks within the middle. Influenced by the three-stage rifting and low thermal gradient, hydrocarbon generation and charging took place very late, and the oil pool formation mechanism is very unique from the Lower Cretaceous rift sequences to the Paleogene. The reservoir-seal assemblages are very complicated in time and space. The sealing capacity of cap rocks was controlled by the CASZ. In general the oils become heavier towards the CASZ and lighter far away. The oil biodegradation is the reason causing the high total acid number. The determination of effective reservoir depth ensures that all discovered fields up to now are high-production fields. The propagation and growth of boundary faults in the rift basins can be divided into a simple fault propagation pattern and a fault growth-linkage pattern. It is firstly found that the linkage of boundary fault segments controls the formation of petroleum systems. Three methods have been established to outline petroleum systems. And a new classification scheme of rift-type petroleum system has been put forward: pre-rift, syn-rift (including passive and active) and post-rift petroleum systems. This scheme will be very important for the further exploration of rift basins. This paper firstly established the formation models of oil pools for the passive rift basins in Sudan: the coupling of accommodation zones and main plays for the formation of giant fields. The overlapping of late rifting broke the anticlines to be several fault-blocks. This process determined that anti-fault blocks are the main traptypes in the cretaceous sequences and anticlines in the Paleogene. This can explain why the traptypes are different between the Muglad and Mefut basins, and will provide theoretic guidance for the exploration strategy. The established formation mechanism and models in this paper have had great potential guidance and promotion for the exploration in Sudan, and resulted in significant economic and social benefit. A giant field of 500 million tons oil in place was found 2003. The cost in Blocks 3/7 is only 0.25
Resumo:
By applying multi-discipline theory and methods comprehensively and with full use of computer, the paper deeps into studying changing rule and control factor of fluid field of ES2 Shengtuo oil field during waterflood development, physical and chemical function, and stress. Matrix field, network field, fluid field, stress field and physical chemistry field and fluid model for dynamic function were established. Macroscopic and microscopic genesis mechanics, distribution rule and control factor of remaining oil were revealed. Remaining oil and emulate model were established. Macroscopic and microscopic distribution rule of mover remaining oil were predicted, several results were achieved as following: The distribution of remaining oil was controlled by micro-structure. At the same development stage, remaining oil saturation of the wells located in higher position of micro-structure is higher than the average saturation in the same layer. The water content ratio has same law. It is the enrichment district that the high position of micro-structure controlled by seal faults. The remaining oil distribution was affected by sedimentary micro-facies, micro-structure, fault sealing, reservoir heterogeneity and affusion-oil extraction. On the plane, the zone owning higher saturation of remaining oil is the area that at the edge miacro-facies and sand-body distribution discontinuously; on the section, the content of waterflood of the upper or middle-upper oil layer of positive rhythm and positive comprehensive rhythm is lower, middle and weak waterflood is main, remaining oil is in enrichment relatively. The remaining oil is relative enrichment at the zones of well network of affusion and oil extraction not affected. 4D dynamic model of reservoir of Es2in Shengtuo oil field was established. Macroscopic and microscopic forming mechanics, distribution rule and control factor were revealed. The emulate model of dynamic function of Shengtuo oil field was established, the space distribution of remaining oil were predicted. Reservoir flow field, matrix field, network field, seep field, physical and chemical field, stress field and fluid field models were established. Reservoir flow field character and distribution were revealed. An improvement of the development geology theory in continental fault depression continental basin was brought on.
Resumo:
In order to discover the distribution law of the remaining oil, the paper focuses on the quantitative characterization of the reservoir heterogeneity and the distribution law of the fluid barrier and interbed, based on fine geological study of the reservoir in Liuhuall-1 oil field. The refined quantitative reservoir geological model has been established by means of the study of core analysis, logging evaluation on vertical well and parallel well, and seismic interpretation and prediction. Utilizing a comprehensive technology combining dynamic data with static data, the distribution characteristics, formation condition and controlling factors of remaining oil in Liuhuall-1 oil field have been illustrated. The study plays an important role in the enrichment regions of the remaining oil and gives scientific direction for the next development of the remaining oil. Several achievements have been obtained as follows: l.On the basis of the study of reservoir division and correlation,eight lithohorizons (layer A, B_1, B_2, B_3, C, D, E, and F) from the top to the bottom of the reservoir are discriminated. The reef facies is subdivided into reef-core facies, fore-reef facies and backreef facies. These three subfacies are further subdivided into five microfacies: coral algal limestone, coralgal micrite, coral algal clastic limestone, bioclastic limestone and foraminiferal limestone. In order to illustrate the distribution law of remaining oil in high watercut period, the stratigraphic structure model and sedimentary model are reconstructed. 2.1n order to research intra-layer, inter-layer and plane reservoir heterogeneity, a new method to characterize reservoir heterogeneity by using IRH (Index of Reservoir Heterogeneity) is introduced. The result indicates that reservoir heterogeneity is medium in layer B_1 and B_3, hard in layer A, B_2, C, E, poor in layer D. 3.Based on the study of the distribution law of fluid barrier and interbed, the effect of fluid battier and interbed on fluid seepage is revealed. Fluid barrier and interbed is abundant in layer A, which control the distribution of crude oil in reservoir. Fluid barrier and interbed is abundant relatively in layer B_2,C and E, which control the spill movement of the bottom water. Layer B_1, B_3 and D tend to be waterflooded due to fluid barrier and interbed is poor. 4.Based on the analysis of reservoir heterogeneity, fluid barrier and interbed and the distribution of bottom water, four contributing regions are discovered. The main lies on the north of well LH11-1A. Two minors lie on the east of well LH11-1-3 and between well LH11-1-3 and well LH11-1-5. The last one lies in layer E in which the interbed is discontinuous. 5.The parameters of reservoir and fluid are obtained recurring to core analysis, logging evaluation on vertical well and parallel well, and seismic interpretation and prediction. Theses parameters provide data for the quantitative characterization of the reservoir heterogeneity and the distribution law of the fluid barrier and interbed. 6.1n the paper, an integrated method about the distribution prediction of remaining oil is put forward on basis of refined reservoir geological model and reservoir numerical simulation. The precision in history match and prediction of remaining oil is improved greatly. The integrated study embodies latest trend in this research field. 7.It is shown that the enrichment of the remaining oil with high watercut in Liuhua 11-1 oil field is influenced by reservoir heterogeneity, fluid barrier and interbed, sealing property of fault, driving manner of bottom water and exploitation manner of parallel well. 8.Using microfacies, IRH, reservoir structure, effective thickness, physical property of reservoir, distribution of fluid barrier and interbed, the analysis of oil and water movement and production data, twelve new sidetracked holes are proposed and demonstrated. The result is favorable to instruct oil field development and have gotten a good effect.
Resumo:
Turbidity sandstone reservoirs have been an important field of hydrocarbon exploration and development in the basins all over the world, as well as in China. Lithologic pools are composed of turbidity sandstones and other sandstones are frequently found in the Jiyang Depression that is a Mesozoic-Cenozoic non-marine oil-bearing basin. The Dongying Sag lies in the sedimentary center of the basin. The subtle traps with turbidity reservoirs are generally difficult to be predicted and described by using current techniques. The studies on turbidity reservoirs plays thus an important theoretical and theoretical practical role in exploration and development in the Jiyang Depression. The attention is, in this thesis, focused on the petrologic properties and oil accumulating behaviors in lake turbidity sedimentary systems in the middle part of the third section of Shahejie Formation in the Dongying Sag, especially in Dongxin area, which lies on the central uplift of the Sag. The paper has disclosed the origin types of turbidity sandstones, distribution pattern and controlling factors of turbidity sandstones, and set up hydrocarbon accumulation patterns of the middle part of the third section of Shahejie Formation in Dongxin, based on nonmarine high resolution sequence stratigraphy, event sedimentology and new theories of hydrocarbon forming. By studying prediction method and technology of turbidity sandstone reservoirs, using precise geological model developing, new techniques of high resolution seismic inversion constrained by logging, the paper has forecast low permeability turbidity sandstone reservoirs and pointed out advantage exploration aims to progressive exploration and development. The paper has obtained mainly many productions and acknowledges as follows: 1.Turbidity sandstone reservoirs of the third section of Shahejie Formationin Dongying Sag are formed in such specifical geological background as rift and extension of basin. The inherited Dongying delta and transgression make up many turbidity distribution areas by overlaying and joining together. The hydrocarbon migrates from depression area to adjacent turbidity sandstone continuously. Accumulation area which is sufficient in oil is formed. 2.The paper has confirmed distinguishable sign of sequence boundary , established stratigraphic framework of Dongying Sag and realized isotime stratigraphic correlation. Es3 of Dongying delta is divided into eleven stages. Among them, the second period of the lower section in Es3, the sixth period of the middle section in Es3, the third period of the upper section in Es3 correspond to eleven sedimentary isotime surface in seismic profile, namely Es3 is classified into eleven Formations. 3.According to such the features of turbidity sandstone as deep in burial, small in area, strong in subtle property, overlaying and joining together and occurring in groups, management through fault and space variations of restriction quantum are realized and the forecast precision of turbidity sandstone by using precise geological model developing, new techniques of high resolution seismic inversion constrained by logging, based on the analysis of all kinds of interwell seismic inversion techniques. 4.According to the features of low permeable turbidity sandstone reservoirs, new method of log interpretation model is put forward. At the same time, distinguish technology of familiar low resistivity oil layer in the turbidity sandstone reservoirs is studied based on petrophysical laboratory work and "four properties" interrelationship between lithological physical Jogging and bearing hydrocarbon properties. Log interpretation model and reservoir index interpretation model of low resistivity oil layer are set up. So the log interpretation precision is improved. 5.The evolution law and its difference of the turbidity sandstone are embodies as follows: the source of sediments come from the south and east of the study area in the middle period of Es3. East source of sediments is pushed from west to east. However, the south source supply of sediments in the early and middle period of Es3 is in full, especially in Es3. subsequently, the supply is decreased gradually. Turbidity fan moves back toward the south and the size of fan is minished accordingly. The characteristic of turbidity sandstone in Dongying Sag is different in different structural positions. Dongxin in the middle-east of the central lift and Niuzhuang Sag He in Dongying delta front and prodelta deep lake subfacies. Although the turbidity sandstone of the two areas root in the Dongying delta sedimentary system, the sand body has different remarkably characteristic. 6.The sedimentary model of the turbiditys in study area have three types as follows: (1) collapse turbidity fan in respect of delta; (2) fault trench turbidity fan; (3) other types of microturbidity sandstone. Middle fan and outer fan, can be found mainly in sublacustrine fan. Middle fan includes braided channel microfacies, central microfacies and braided interchannel microfacies, which is main prospecting oil-bearing subfacies. The middle section of the third section of Shahejie Formation in study area (for example the central lift) can be divided into middle-lower and upper part. The middle-lower part is characteristic of turbidity fan. The upper part is sedimented mainly by delta-collapse fan. 7.The turbidity reservoirs of the middle part of the third section of Shahejie Formation in study area characterize by low maturity both in component and texture, strong in diagenesis and low in permeability. The reservoir can be classified into four types. Type III is the body of reservoir and comprises two types of H a and HI b. M a belongs to middle porosity - low permeability reservoir and distributes in the central lift. Hlb belongs to low porosity - low permeability and distributes in Haojia region. 8.A11 single sand body of lens turbidity reservoir of the middle part of the third section of Shahejie Formation in study area are surrounded by thick dark source rocks. The oil-water system is complex and behaves that every sandstone is single seal unit. The water body is 1/3-1-5 of the sand body. The edge water is not active. The gas exists in the top of reservoir in the form of mixed gas. For far-range turbidity fan with big scale channel, the area and volume of sand body is large and the gap is big in oil packing degree. There are lots of edge water and bottom water, and the latter increases rapidly during the course of development. 9.By exerting the modern hydrocarbon forming theories, the third section of Shahejie Formation in study area belongs to abnormally pressured fluid compartment. The lithological reservoir of the third section of Shahejie Formation is formed in the compartment. The reservoir-formed dynamic system belongs to lower self-source enclosed type. The result and the practice indicate that the form and accumulation of lithological oil reservoirs are controlled by the temperature and pressure of stratum, microfacies, thickness of sand body, fault and reservoir heterogeneity. 10. Based on studies above, the emphases focus on in south and north part of Dongying structure, west Dongxin region and south part Xinzhen structure in the application of production. The practice proves that the turbidity sandstone reservoirs in Ying 11 block and the fault-lithological reservoirs in Xin 133 block have been obtained significant breakthrough. The next target is still sandstone groups of the third section of Shahejie Formation in the bordering areas of Dongxin region for instance Xin 149 area, He 89 area, Ying 8 area etc.
Resumo:
Gaochentou region is located in the southwest direction of Gaochentou village in Huanghua city of Hebei province. In regionally structural position, It lies in Qikou sag In the middle part of Huanghua depression, which belongs to the east part of the south Dagang structure zone in the middle part of Huanghua depression. Its' very beneficial at regional structure in Gaochentou , and It becomes the advantage area for oil and gas gathered and preserved, Sandstone reservoir of Dongying Formation is main bearing bed .Dongying Formation in Gaochentou region of Huanghua depression is consisted of set of mudstone and sandstone interbeds by deposited delta fades . Dongying Formation can be divided into 3 members from above to below: the first member of Dongying Formation (FMDF), the second member of Dongying Formation (SMDF), and third member of Dongying Formation (TMDF). The lithology of the upper part of FMDF was consisted of mostly middle-grained and fine-grained sandstone, and it is small for the oil-bearing area of the sand bodies .The lithology of the lower part is coarse-grained sandstone bodies which are well connected between sandstone bodies of wells, and the lower part was main bed of oil production in Dongying Formation; SMDF and TMDF are consisted of larger scale set of mudstone, in which the sandbodies are lenticular and pinch out quickly, and the lithology was mostly fine sandstone and silt stone, in which there are little oil and gas .Because the reservoirs in this area are largely influenced by the factors such as lithology, fault and others, and the reservoirs have the strong,heterogeneity , there exists the problem of oil-down and water-up for vertical distribution of oil and gas bearing. It is not very clearly for the three dimension distribution of sandstone , and the geology researchs is not enough. So, it can't satisfy the need of further development and production for Gaochentou oilfield.Having the key problem of oil-down and water-up and the mechanism of the reservoir for Gaochentou area, There are as follow study works, the first, is study of the high-resolution correlation of sequence stratigraphy and sedimentary microfacies. Dongying Formation was divided into three parasequence sets and each parasequence set was divided into different amount of parasequences. FMDF, as the main oil and gas producing bed, can be divided into seven parasequences. Oil and gas are discovered in six parasequences except the seventh. On the basis of study of sedimentary microfacies, the sediments of Dongying Formation are considered deposited mainly in delta front subfacies. The microfacies types of Dongying Formation are sub-water distirbutary channel, sub-water natural bank, inter distributary channel bay, distributary channel mouth dam, and delta front mat sand.Seismic facies analysis and logging-constrained inversion technique were applied by Author for transverse prediction of sandstone reservoir. Having 4 modes of interwell single sandbodies correlation technique, Author have described distribution characteristics of sandbodies, and established geological reservoir model of Gaochentou reservoir.Author presented that the reservoirs characteristic have very strong heterogeneity ,and In the section of sandstone interlayed with mudstone,the folium sandstone interlayed with each other, and the wedge shaped sandbodies pinched out in the mudstone. So the pinch-out up sandstone trap and lenticular sandstone trap are easily formed. They are most small scale overlying pinches out in the place of slope. This article applies the concept of deep basin oil to resolve reasonably the problem of which the oil is below the water in Gaochentou area. Combined with the study of sedimentary facies, reservoir and other aspects, the mechanism and patterns of deep basin oil are studied on the basis of characteristics in Gaochentou area.On the basis of the above study, the mechanism of the oil and gas' migration and accumulation in isotropic sandstone and heterogeneous sandstone are thoroughly analyzed through experiments on physical modeling. Experiments on physical modeling show that the discrepancy between sand layers with different permeability and thickness has important influence on the direction, path, and injection layer of oil's migration. At the beginning of the injection of oil and gas in high permeability sand layer, the pressure is low, the migration resistance is small, and the oil and gas are more easily displacing the water in sand. So it can act as good transformation layer or reservoir. But at the beginning of the injection of oil and gas in sand layer with low permeability, the pressure is high, the migration resistance is big, and the oil and gas are more difficultly displacing the water in sand. So it can only act as bad or worse transformation layer or reservoir. Even if it cannot act as transformation layer or reservoir, it can act as water layer or dry layer. The discrepancy between sand layers on permeability and thickness can make discrepancy in injection of oil and gas between different layers. Consequently it leads to small amount of oil and gas injection in sand layers with low permeability. Ultimately it affects the oil's accumulation and distribution in different sand layers.At Last, combining analysis of the structure and pool forming condition, The thesis has established models of reservoir formation to predict the advantage distribution of oil and gas bearing , and put forward the prospective target It is not only of theoretical signification for explosion and importance, but also has realistic value in guiding the progressive petroleum exploration and exploitation.
Resumo:
Yuanmou area lies on the southeastern edge of the Tibetan Plateau, the middlesegment of Yunnan-Sichuan North-South Extending Tectonic Belt and the upper reaches of the Yangztze River, which is renowned for its thick late Cenozoic fluvial-lacustrine sequences that yield rich mammalian fossils including hominoid and early human. The sediments provides great potentials for understanding the relationships between uplift of the Tibetan Plateau, evolution of hominoids and other mammalian and evolution and formation of basins in Southwest China since late Miocene. However, lithostratigrphic and chronologic views on them are controversial and hinder further discussion of the relationships of them. To this end, we selected the Baozidongqing section and the Dapoqing section to carry out systematic lithostratigraphic, magnetostratlgraphic and environmental magnetism researches in this area.The Baozidongqing section was dated to about 10.95-7.17 Ma. The age estimation of the topmost hominoid-bearing layer was about 7.43-7.17 Ma. Rock magnetic results show that the dominant magnetic carrier is hematite, with minor amount of magnetite. Both the composition and concentration of magnetic minerals strongly correlate with the lithostratigraphy, indicating that Yuanmou basin is characterized by alternating of long-term torrid-humid climate and short-term dry-hot climate. But the pattern of these short-term hot-dry events, including both the lasting time and the frequency of their occurrence dramatically changed since -8.1 Ma. Our results infer that the drying process of the Asian west interior and a significant uplift of the Tibetan Plateau would have probably caused jointly the extinction of hominoids, or the emigration of hominoids from Yuanmou to adjacent relatively torrid-humid areas.The strata between the upper of the Dapoqing section, the Niujianbao Hill and Shangnabang area can be linked by three mark layers of conglomerate, which is rather continuous and coherent than physical disturbance by new tectonic activities. Rock magnetic studies indicate that hematite is the main magnetic carriers. The section is dated back to about 2.8-1.37 Ma. Its paleocurrent flowed northeastward, which was a close and stagnant river and swamp environment about 2.2 Ma ago. Then it ran northwestward and turned into an open overflown and braid river sedimentary face during 2.2 to 1.57 Ma. Since 1.57 Ma, the paleocurrent flowed intensely northwestern and about 1.37 Ma ago, it ended the basically continuous fluvial-lacustrine deposition.