964 resultados para Paraná Continental Flood Basalts
Resumo:
The Antarctic continental shelf seas feature a bimodal distribution of water mass temperature, with the Amundsen and Bellingshausen Seas flooded by Circumpolar Deep Water that is several degrees Celsius warmer than the cold shelf waters prevalent in the Weddell and Ross Seas. This bimodal distribution could be caused by differences in atmospheric forcing, ocean dynamics, ocean and ice feedbacks, or some combination of these factors. In this study, a highly simplified coupled sea ice–mixed layer model is developed to investigate the physical processes controlling this situation. Under regional atmospheric forcings and parameter choices the 10-yr simulations demonstrate a complete destratification of the Weddell Sea water column in winter, forming cold, relatively saline shelf waters, while the Amundsen Sea winter mixed layer remains shallower, allowing a layer of deep warm water to persist. Applying the Weddell atmospheric forcing to the Amundsen Sea model destratifies the water column after two years, and applying the Amundsen forcing to the Weddell Sea model results in a shallower steady-state winter mixed layer that no longer destratifies the water column. This suggests that the regional difference in atmospheric forcings alone is sufficient to account for the bimodal distribution in Antarctic shelf-sea temperatures. The model prediction of mixed layer depth is most sensitive to the air temperature forcing, but a switch in all forcings is required to prevent destratification of the Weddell Sea water column.
Resumo:
The quality control, validation and verification of the European Flood Alert System (EFAS) are described. EFAS is designed as a flood early warning system at pan-European scale, to complement national systems and provide flood warnings more than 2 days before a flood. On average 20–30 alerts per year are sent out to the EFAS partner network which consists of 24 National hydrological authorities responsible for transnational river basins. Quality control of the system includes the evaluation of the hits, misses and false alarms, showing that EFAS has more than 50% of the time hits. Furthermore, the skills of both the meteorological as well as the hydrological forecasts are evaluated, and are included here for a 10-year period. Next, end-user needs and feedback are systematically analysed. Suggested improvements, such as real-time river discharge updating, are currently implemented.
Resumo:
The incorporation of numerical weather predictions (NWP) into a flood forecasting system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and lead to a high number of false alarms. The availability of global ensemble numerical weather prediction systems through the THORPEX Interactive Grand Global Ensemble' (TIGGE) offers a new opportunity for flood forecast. The Grid-Xinanjiang distributed hydrological model, which is based on the Xinanjiang model theory and the topographical information of each grid cell extracted from the Digital Elevation Model (DEM), is coupled with ensemble weather predictions based on the TIGGE database (CMC, CMA, ECWMF, UKMO, NCEP) for flood forecast. This paper presents a case study using the coupled flood forecasting model on the Xixian catchment (a drainage area of 8826 km2) located in Henan province, China. A probabilistic discharge is provided as the end product of flood forecast. Results show that the association of the Grid-Xinanjiang model and the TIGGE database gives a promising tool for an early warning of flood events several days ahead.
Resumo:
Following trends in operational weather forecasting, where ensemble prediction systems (EPS) are now increasingly the norm, flood forecasters are beginning to experiment with using similar ensemble methods. Most of the effort to date has focused on the substantial technical challenges of developing coupled rainfall-runoff systems to represent the full cascade of uncertainties involved in predicting future flooding. As a consequence much less attention has been given to the communication and eventual use of EPS flood forecasts. Drawing on interviews and other research with operational flood forecasters from across Europe, this paper highlights a number of challenges to communicating and using ensemble flood forecasts operationally. It is shown that operational flood forecasters understand the skill, operational limitations, and informational value of EPS products in a variety of different and sometimes contradictory ways. Despite the efforts of forecasting agencies to design effective ways to communicate EPS forecasts to non-experts, operational flood forecasters were often skeptical about the ability of forecast recipients to understand or use them appropriately. It is argued that better training and closer contacts between operational flood forecasters and EPS system designers can help ensure the uncertainty represented by EPS forecasts is represented in ways that are most appropriate and meaningful for their intended consumers, but some fundamental political and institutional challenges to using ensembles, such as differing attitudes to false alarms and to responsibility for management of blame in the event of poor or mistaken forecasts are also highlighted. Copyright © 2010 Royal Meteorological Society.
Resumo:
This paper highlights some communicative and institutional challenges to using ensemble prediction systems (EPS) in operational flood forecasting, warning, and civil protection. Focusing in particular on the Swedish experience, as part of the PREVIEW FP6 project, of applying EPS to operational flood forecasting, the paper draws on a wider set of site visits, interviews, and participant observation with flood forecasting centres and civil protection authorities (CPAs) in Sweden and 15 other European states to reflect on the comparative success of Sweden in enabling CPAs to make operational use of EPS for flood risk management. From that experience, the paper identifies four broader lessons for other countries interested in developing the operational capacity to make, communicate, and use EPS for flood forecasting and civil protection. We conclude that effective training and clear communication of EPS, while clearly necessary, are by no means sufficient to ensure effective use of EPS. Attention must also be given to overcoming the institutional obstacles to their use and to identifying operational choices for which EPS is seen to add value rather than uncertainty to operational decision making by CPAs.
Resumo:
Operational medium range flood forecasting systems are increasingly moving towards the adoption of ensembles of numerical weather predictions (NWP), known as ensemble prediction systems (EPS), to drive their predictions. We review the scientific drivers of this shift towards such ‘ensemble flood forecasting’ and discuss several of the questions surrounding best practice in using EPS in flood forecasting systems. We also review the literature evidence of the ‘added value’ of flood forecasts based on EPS and point to remaining key challenges in using EPS successfully.
Resumo:
Floods are a major threat to human existence and historically have both caused the collapse of civilizations and forced the emergence of new cultures. The physical processes of flooding are complex. Increased population, climate variability, change in catchment and channel management, modified landuse and land cover, and natural change of floodplains and river channels all lead to changes in flood dynamics, and as a direct or indirect consequence, social welfare of humans. Section 5.16.1 explores the risks and benefits brought about by floods and reviews the responses of floods and floodplains to climate and landuse change. Section 5.08.2 reviews the existing modeling tools, and the top–down and bottom–up modeling frameworks that are used to assess impacts on future floods. Section 5.08.3 discusses changing flood risk and socioeconomic vulnerability based on current trends in emerging or developing countries and presents an alternative paradigm as a pathway to resilience. Section 5.08.4 concludes the chapter by stating a portfolio of integrated concepts, measures, and avant-garde thinking that would be required to sustainably manage future flood risk.
Resumo:
Hydrological ensemble prediction systems (HEPS) have in recent years been increasingly used for the operational forecasting of floods by European hydrometeorological agencies. The most obvious advantage of HEPS is that more of the uncertainty in the modelling system can be assessed. In addition, ensemble prediction systems generally have better skill than deterministic systems both in the terms of the mean forecast performance and the potential forecasting of extreme events. Research efforts have so far mostly been devoted to the improvement of the physical and technical aspects of the model systems, such as increased resolution in time and space and better description of physical processes. Developments like these are certainly needed; however, in this paper we argue that there are other areas of HEPS that need urgent attention. This was also the result from a group exercise and a survey conducted to operational forecasters within the European Flood Awareness System (EFAS) to identify the top priorities of improvement regarding their own system. They turned out to span a range of areas, the most popular being to include verification of an assessment of past forecast performance, a multi-model approach for hydrological modelling, to increase the forecast skill on the medium range (>3 days) and more focus on education and training on the interpretation of forecasts. In light of limited resources, we suggest a simple model to classify the identified priorities in terms of their cost and complexity to decide in which order to tackle them. This model is then used to create an action plan of short-, medium- and long-term research priorities with the ultimate goal of an optimal improvement of EFAS in particular and to spur the development of operational HEPS in general.
Resumo:
As the calibration and evaluation of flood inundation models are a prerequisite for their successful application, there is a clear need to ensure that the performance measures that quantify how well models match the available observations are fit for purpose. This paper evaluates the binary pattern performance measures that are frequently used to compare flood inundation models with observations of flood extent. This evaluation considers whether these measures are able to calibrate and evaluate model predictions in a credible and consistent way, i.e. identifying the underlying model behaviour for a number of different purposes such as comparing models of floods of different magnitudes or on different catchments. Through theoretical examples, it is shown that the binary pattern measures are not consistent for floods of different sizes, such that for the same vertical error in water level, a model of a flood of large magnitude appears to perform better than a model of a smaller magnitude flood. Further, the commonly used Critical Success Index (usually referred to as F<2 >) is biased in favour of overprediction of the flood extent, and is also biased towards correctly predicting areas of the domain with smaller topographic gradients. Consequently, it is recommended that future studies consider carefully the implications of reporting conclusions using these performance measures. Additionally, future research should consider whether a more robust and consistent analysis could be achieved by using elevation comparison methods instead.
Resumo:
Flood simulation models and hazard maps are only as good as the underlying data against which they are calibrated and tested. However, extreme flood events are by definition rare, so the observational data of flood inundation extent are limited in both quality and quantity. The relative importance of these observational uncertainties has increased now that computing power and accurate lidar scans make it possible to run high-resolution 2D models to simulate floods in urban areas. However, the value of these simulations is limited by the uncertainty in the true extent of the flood. This paper addresses that challenge by analyzing a point dataset of maximum water extent from a flood event on the River Eden at Carlisle, United Kingdom, in January 2005. The observation dataset is based on a collection of wrack and water marks from two postevent surveys. A smoothing algorithm for identifying, quantifying, and reducing localized inconsistencies in the dataset is proposed and evaluated showing positive results. The proposed smoothing algorithm can be applied in order to improve flood inundation modeling assessment and the determination of risk zones on the floodplain.
Resumo:
We explore the large spatial variation in the relationship between population density and burned area, using continental-scale Geographically Weighted Regression (GWR) based on 13 years of satellite-derived burned area maps from the global fire emissions database (GFED) and the human population density from the gridded population of the world (GPW 2005). Significant relationships are observed over 51.5% of the global land area, and the area affected varies from continent to continent: population density has a significant impact on fire over most of Asia and Africa but is important in explaining fire over < 22% of Europe and Australia. Increasing population density is associated with both increased and decreased in fire. The nature of the relationship depends on land-use: increasing population density is associated with increased burned are in rangelands but with decreased burned area in croplands. Overall, the relationship between population density and burned area is non-monotonic: burned area initially increases with population density and then decreases when population density exceeds a threshold. These thresholds vary regionally. Our study contributes to improved understanding of how human activities relate to burned area, and should contribute to a better estimate of atmospheric emissions from biomass burning.
Resumo:
A holistic perspective on changing rainfall-driven flood risk is provided for the late 20th and early 21st centuries. Economic losses from floods have greatly increased, principally driven by the expanding exposure of assets at risk. It has not been possible to attribute rain-generated peak streamflow trends to anthropogenic climate change over the past several decades. Projected increases in the frequency and intensity of heavy rainfall, based on climate models, should contribute to increases in precipitation-generated local flooding (e.g. flash flooding and urban flooding). This article assesses the literature included in the IPCC SREX report and new literature published since, and includes an assessment of changes in flood risk in seven of the regions considered in the recent IPCC SREX report—Africa, Asia, Central and South America, Europe, North America, Oceania and Polar regions. Also considering newer publications, this article is consistent with the recent IPCC SREX assessment finding that the impacts of climate change on flood characteristics are highly sensitive to the detailed nature of those changes and that presently we have only low confidence1 in numerical projections of changes in flood magnitude or frequency resulting from climate change.
Resumo:
We have extensively evaluated the response of cloud-base drizzle rate (Rcb; mm day–1) in warm clouds to liquid water path (LWP; g m–2) and to cloud condensation nuclei (CCN) number concentration (NCCN; cm–3), an aerosol proxy. This evaluation is based on a 19-month long dataset of Doppler radar, lidar, microwave radiometers and aerosol observing systems from the Atmospheric Radiation Measurement (ARM) Mobile Facility deployments at the Azores and in Germany. Assuming 0.55% supersaturation to calculate NCCN, we found a power law , indicating that Rcb decreases by a factor of 2–3 as NCCN increases from 200 to 1000 cm–3 for fixed LWP. Additionally, the precipitation susceptibility to NCCN ranges between 0.5 and 0.9, in agreement with values from simulations and aircraft measurements. Surprisingly, the susceptibility of the probability of precipitation from our analysis is much higher than that from CloudSat estimates, but agrees well with simulations from a multi-scale high-resolution aerosol-climate model. Although scale issues are not completely resolved in the intercomparisons, our results are encouraging, suggesting that it is possible for multi-scale models to accurately simulate the response of LWP to aerosol perturbations.