1000 resultados para Paracompact Space
An intercomparison of bio-optical techniques for detecting phytoplankton functional types from space
Resumo:
Seasonal and inter-annual variations in phytoplankton community abundance in the Bay of Biscay are studied. Preliminarily processed by the National Aeronautics and Space Administration (NASA) to yield normalized water-leaving radiance and the top-of-the-atmosphere solar radiance, Sea-viewing Wide Field-of-View Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), and Coastal Zone Color Scanner (CZCS) data are further supplied to our dedicated retrieval algorithms to infer the sought for parameters. By applying the National Oceanic and Atmospheric Administration's (NOAA's) Advanced Very High Resolution Radiometer (AVHRR) data, the surface reflection coefficient in the only band in the visible spectrum is derived and employed for analysis. Decadal bridged time series of variations of diatom-dominated phytoplankton and green dinoflagellate Lepidodinium chlorophorum within the shelf zone and the coccolithophore Emiliania huxleyi in the pelagic area of the Bay are documented and analysed in terms of impacts of some biogeochemical and geophysical forcing factors.
Resumo:
Deriving maps of phytoplankton taxa based on remote sensing data using bio-optical properties of phytoplankton alone is challenging. A more holistic approach was developed using artificial neural networks, incorporating ecological and geographical knowledge together with ocean color, bio-optical characteristics, and remotely sensed physical parameters. Results show that the combined remote sensing approach could discriminate four major phytoplankton functional types (diatoms, dinoflagellates, coccolithophores, and silicoflagellates) with an accuracy of more than 70%. Models indicate that the most important information for phytoplankton functional type discrimination is spatio-temporal information and sea surface temperature. This approach can supply data for large-scale maps of predicted phytoplankton functional types, and an example is shown.
Resumo:
Regime shifts are sudden changes in ecosystem structure that can be detected across several ecosystem components. The concept that regime shifts are common in marine ecosystems has gained popularity in recent years. Many studies have searched for the step-like changes in ecosystem state expected under a simple interpretation of this idea. However, other kinds of change, such as pervasive trends, have often been ignored. We assembled over 300 ecological time series from seven UK marine regions, covering two to three decades. We developed state-space models for the first principal component of the time series in each region, a common measure of ecosystem state. Our models allowed both trends and step changes, possibly in combination. We found trends in three of seven regions and step changes in two of seven regions. Gradual and sudden changes are therefore important trajectories to consider in marine ecosystems.
Resumo:
Global ocean phytoplankton biomass (C-phyto) and total particulate organic carbon (POC) stocks have largely been characterized from space using passive ocean color measurements. A space-based light detection and ranging (lidar) system can provide valuable complementary observations for C-phyto and POC assessments, with benefits including day-night sampling, observations through absorbing aerosols and thin cloud layers, and capabilities for vertical profiling through the water column. Here we use measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) to quantify global C-phyto and POC from retrievals of subsurface particulate backscatter coefficients (b(bp)). CALIOP b(bp) data compare favorably with airborne, ship-based, and passive ocean data and yield global average mixed-layer standing stocks of 0.44 Pg C for C-phyto and 1.9 Pg for POC. CALIOP-based C-phyto and POC data exhibit global distributions and seasonal variations consistent with ocean plankton ecology. Our findings support the use of spaceborne lidar measurements for advancing understanding of global plankton systems.
Resumo:
Chapters 3 and 15 of Joyce's Ulysses exhibit glimpses of three dreams, fantasies and eventual nightmares linked to the figure of 'Haroun al Raschid.' Historically speaking, the latter was a powerful Caliph of Baghdad, a medieval potentate about whom many of the most memorable of The Thousand and One Nights or The Arabian Nights' Entertainments were once and then again spun as tales of pleasure. Joyce seizes upon the figure of 'Haroun al Raschid' as a fictive measure to articulate the 'orientalist' fantasies of Stephen Dedalus and Leopold Bloom. However, this evocative figure of Near Eastern history, of fabulous narrative and the progressively converging fantasies of two modern European literary characters is riddled with paradox. Such material provides Joyce a perceptive and proleptic sense of the paradoxes and brutal historical contradictions through which Western and Eastern dreams of theocratic nationalism, ethnic zealotry, colonial rebellion and Zionism are to be played out. W. B. Yeats' poem 'The Gift of Harun al-Raschid', written in 1923, the year after the book publication of Ulysses, provides both a fitting foil and a significant socio-historical point of reference for Joyce's own figurative use of the Caliph of Baghdad.
Resumo:
This article discusses how the notion of performance provides impetus for the design of interactive digital environments. These environments can ultimately be regarded as user-spaces; a condition which replaces the "fixed" art-object with a configuration of interactions. Our understanding of space, as suggested by Lefevbre (2001), defines the "inhabitant" as a full participant, a user, a performer of space. What is at play when the installation artist designs environments that invite performative exploration? The issue of improvised performance in the inhabiting of installation spaces is exposed. Two interactive installations by the author and works by others in the field provide a context for discussion for discussion and analysis.