962 resultados para PROTON EXCHANGE FUEL CELLS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paracrine motogenic factors, including motility cytokines and extracellular matrix molecules secreted by normal cells, can stimulate metastatic cell invasion. For extracellular matrix molecules, both the intact molecules and the degradative products may exhibit these activities, which in some cases are not shared by the intact molecules. We found that human peritumoral and lung fibroblasts secrete motility-stimulating activity for several recently established human sarcoma cell strains. The motility of lung metastasis-derived human SYN-1 sarcoma cells was preferentially stimulated by human lung and peritumoral fibroblast motility-stimulating factors (FMSFs). FMSFs were nondialyzable, susceptible to trypsin, and sensitive to dithiothreitol. Cycloheximide inhibited accumulation of FMSF activity in conditioned medium; however, addition of cycloheximide to the migration assay did not significantly affect motility-stimulating activity. Purified hepatocyte growth factor/scatter factor (HGF/SF), rabbit anti-hHGF, and RT-PCR analysis of peritumoral and lung fibroblast HGF/SF mRNA expression indicated that FMSF activity was unrelated to HGF/SF. Partial purification of FMSF by gel exclusion chromatography revealed several peaks of activity, suggesting multiple FMSF molecules or complexes.^ We purified the fibroblast motility-stimulating factor from human lung fibroblast-conditioned medium to apparent homogeneity by sequential heparin affinity chromatography and DEAE anion exchange chromatography. Lysylendopeptidase C digestion of FMSF and sequencing of peptides purified by reverse phase HPLC after digestion identified it as an N-terminal fragment of human fibronectin. Purified FMSF stimulated predominantly chemotaxis but chemokinesis as well of SYN-1 sarcoma cells and was chemotactic for a variety of human sarcoma cells, including fibrosarcoma, leiomyosarcoma, liposarcoma, synovial sarcoma and neurofibrosarcoma cells. The motility-stimulating activity present in HLF-CM was completely eliminated by either neutralization or immunodepletion with a rabbit anti-human-fibronectin antibody, thus further confirming that the fibronectin fragment was the FMSF responsible for the motility stimulation of human soft tissue sarcoma cells. Since human soft tissue sarcomas have a distinctive hematogenous metastatic pattern (predominantly lung), FMSF may play a role in this process. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IL-24 is an unusual member of the IL-10 family, which is considered a Th1 cytokine that exhibits tumor cell cytotoxicity. I describe the purification of this novel cytokine from the supernatant of IL-24 gene transfected human embryonic kidney cells and define the biochemical and functional properties of the soluble, human IL-24 protein. ^ I showed IL-24 non-covalently associates with bovine albumin. Immunoaffinity purification followed by cation exchange chromatography resulted in the significant enrichment of N-glycosylated IL-24. This protein elicited dose-dependent secretion of TNF-α and IL-6 from purified human monocytes and TNF-α secretion from PMA differentiated U937 cells. I showed this same protein was cytotoxic to melanoma tumor cells via the induction of IFN-α. ^ I reported IL-24 associates as at least two disulfide linked, N-glycosylated dimers. Enzymatic removal of N-linked-glycosylation from purified IL-24 partially diminished its cytokine and cytotoxic functions. Disruption of IL-24 dimers via reduction and alkylation of intermolecular disulfide bonds nearly abolished IL-24s cytokine function. ^ I elucidated IL-24 induced TNF-α secretion was pSTAT1, pSTAT3 as well as the class II heterodimeric receptors IL-20R1/IL-22R2 independent. I identified a requirement for the heterodimer of Toll-like Receptors 1 and 2 for IL-24s cytokine function and show a physical interaction between IL-24 and the extracellular domain of TLR-1. ^ Thus, I demonstrated that purified N-glycosylated, soluble, dimeric, human IL-24 exhibits both immunomodulatory and anti-cancer activities and these functions remain associated during purification. IL-24 induced TNF-α secretion required an interaction with the heterodimeric receptor TLR-1/2 and IL-24s cytotoxic affect to melanoma tumor cells was in part due to its induction of IFN-β. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El trabajo que ha dado lugar a esta Tesis Doctoral se enmarca en la invesitagación en células solares de banda intermedia (IBSCs, por sus siglas en inglés). Se trata de un nuevo concepto de célula solar que ofrece la posibilidad de alcanzar altas eficiencias de conversión fotovoltaica. Hasta ahora, se han demostrado de manera experimental los fundamentos de operación de las IBSCs; sin embargo, esto tan sólo has sido posible en condicines de baja temperatura. El concepto de banda intermedia (IB, por sus siglas en inglés) exige que haya desacoplamiento térmico entre la IB y las bandas de valencia y conducción (VB and CB, respectivamente, por sus siglas en inglés). Los materiales de IB actuales presentan un acoplamiento térmico demasiado fuerte entre la IB y una de las otras dos bandas, lo cual impide el correcto funcionamiento de las IBSCs a temperatura ambiente. En el caso particular de las IBSCs fabricadas con puntos cuánticos (QDs, por sus siglas en inglés) de InAs/GaAs - a día de hoy, la tecnología de IBSC más estudiada - , se produce un rápido intercambio de portadores entre la IB y la CB, por dos motivos: (1) una banda prohibida estrecha (< 0.2 eV) entre la IB y la CB, E^, y (2) la existencia de niveles electrónicos entre ellas. El motivo (1) implica, a su vez, que la máxima eficiencia alcanzable en estos dispositivos es inferior al límite teórico de la IBSC ideal, en la cual E^ = 0.71 eV. En este contexto, nuestro trabajo se centra en el estudio de IBSCs de alto gap (o banda prohibida) fabricadsas con QDs, o lo que es lo mismo, QD-IBSCs de alto gap. Hemos fabricado e investigado experimentalmente los primeros prototipos de QD-IBSC en los que se utiliza AlGaAs o InGaP para albergar QDs de InAs. En ellos demostramos une distribución de gaps mejorada con respecto al caso de InAs/GaAs. En concreto, hemos medido valores de E^ mayores que 0.4 eV. En los prototipos de InAs/AlGaAs, este incremento de E^ viene acompaado de un incremento, en más de 100 meV, de la energía de activación del escape térmico. Además, nuestros dispositivos de InAs/AlGaAs demuestran conversión a la alza de tensión; es decir, la producción de una tensión de circuito abierto mayor que la energía de los fotones (dividida por la carga del electrón) de un haz monocromático incidente, así como la preservación del voltaje a temperaura ambiente bajo iluminación de luz blanca concentrada. Asimismo, analizamos el potencial para detección infrarroja de los materiales de IB. Presentamos un nuevo concepto de fotodetector de infrarrojos, basado en la IB, que hemos llamado: fotodetector de infrarrojos activado ópticamente (OTIP, por sus siglas en inglés). Nuestro novedoso dispositivo se basa en un nuevo pricipio físico que permite que la detección de luz infrarroja sea conmutable (ON y OFF) mediante iluminación externa. Hemos fabricado un OTIP basado en QDs de InAs/AlGaAs con el que demostramos fotodetección, bajo incidencia normal, en el rango 2-6/xm, activada ópticamente por un diodoe emisor de luz de 590 nm. El estudio teórico del mecanismo de detección asistido por la IB en el OTIP nos lleva a poner en cuestión la asunción de quasi-niveles de Fermi planos en la zona de carga del espacio de una célula solar. Apoyados por simuaciones a nivel de dispositivo, demostramos y explicamos por qué esta asunción no es válida en condiciones de corto-circuito e iluminación. También llevamos a cabo estudios experimentales en QD-IBSCs de InAs/AlGaAs con la finalidad de ampliar el conocimiento sobre algunos aspectos de estos dispositivos que no han sido tratados aun. En particular, analizamos el impacto que tiene el uso de capas de disminución de campo (FDLs, por sus siglas en inglés), demostrando su eficiencia para evitar el escape por túnel de portadores desde el QD al material anfitrión. Analizamos la relación existente entre el escape por túnel y la preservación del voltaje, y proponemos las medidas de eficiencia cuántica en función de la tensión como una herramienta útil para evaluar la limitación del voltaje relacionada con el túnel en QD-IBSCs. Además, realizamos medidas de luminiscencia en función de la temperatura en muestras de InAs/GaAs y verificamos que los resltados obtenidos están en coherencia con la separación de los quasi-niveles de Fermi de la IB y la CB a baja temperatura. Con objeto de contribuir a la capacidad de fabricación y caracterización del Instituto de Energía Solar de la Universidad Politécnica de Madrid (IES-UPM), hemos participado en la instalación y puesta en marcha de un reactor de epitaxia de haz molecular (MBE, por sus siglas en inglés) y el desarrollo de un equipo de caracterización de foto y electroluminiscencia. Utilizando dicho reactor MBE, hemos crecido, y posteriormente caracterizado, la primera QD-IBSC enteramente fabricada en el IES-UPM. ABSTRACT The constituent work of this Thesis is framed in the research on intermediate band solar cells (IBSCs). This concept offers the possibility of achieving devices with high photovoltaic-conversion efficiency. Up to now, the fundamentals of operation of IBSCs have been demonstrated experimentally; however, this has only been possible at low temperatures. The intermediate band (IB) concept demands thermal decoupling between the IB and the valence and conduction bands. Stateof- the-art IB materials exhibit a too strong thermal coupling between the IB and one of the other two bands, which prevents the proper operation of IBSCs at room temperature. In the particular case of InAs/GaAs quantum-dot (QD) IBSCs - as of today, the most widely studied IBSC technology - , there exist fast thermal carrier exchange between the IB and the conduction band (CB), for two reasons: (1) a narrow (< 0.2 eV) energy gap between the IB and the CB, EL, and (2) the existence of multiple electronic levels between them. Reason (1) also implies that maximum achievable efficiency is below the theoretical limit for the ideal IBSC, in which EL = 0.71 eV. In this context, our work focuses on the study of wide-bandgap QD-IBSCs. We have fabricated and experimentally investigated the first QD-IBSC prototypes in which AlGaAs or InGaP is the host material for the InAs QDs. We demonstrate an improved bandgap distribution, compared to the InAs/GaAs case, in our wide-bandgap devices. In particular, we have measured values of EL higher than 0.4 eV. In the case of the AlGaAs prototypes, the increase in EL comes with an increase of more than 100 meV of the activation energy of the thermal carrier escape. In addition, in our InAs/AlGaAs devices, we demonstrate voltage up-conversion; i. e., the production of an open-circuit voltage larger than the photon energy (divided by the electron charge) of the incident monochromatic beam, and the achievement of voltage preservation at room temperature under concentrated white-light illumination. We also analyze the potential of an IB material for infrared detection. We present a IB-based new concept of infrared photodetector that we have called the optically triggered infrared photodetector (OTIP). Our novel device is based on a new physical principle that allows the detection of infrared light to be switched ON and OFF by means of an external light. We have fabricated an OTIP based on InAs/AlGaAs QDs with which we demonstrate normal incidence photodetection in the 2-6 /xm range optically triggered by a 590 nm light-emitting diode. The theoretical study of the IB-assisted detection mechanism in the OTIP leads us to questioning the assumption of flat quasi-Fermi levels in the space-charge region of a solar cell. Based on device simulations, we prove and explain why this assumption is not valid under short-circuit and illumination conditions. We perform new experimental studies on InAs/GaAs QD-IBSC prototypes in order to gain knowledge on yet unexplored aspects of the performance of these devices. Specifically, we analyze the impact of the use of field-damping layers, and demonstrate this technique to be efficient for avoiding tunnel carrier escape from the QDs to the host material. We analyze the relationship between tunnel escape and voltage preservation, and propose voltage-dependent quantum efficiency measurements as an useful technique for assessing the tunneling-related limitation to the voltage preservation of QD-IBSC prototypes. Moreover, we perform temperature-dependent luminescence studies on InAs/GaAs samples and verify that the results are consistent with a split of the quasi-Fermi levels for the CB and the IB at low temperature. In order to contribute to the fabrication and characterization capabilities of the Solar Energy Institute of the Universidad Polite´cnica de Madrid (IES-UPM), we have participated in the installation and start-up of an molecular beam epitaxy (MBE) reactor and the development of a photo and electroluminescence characterization set-up. Using the MBE reactor, we have manufactured and characterized the first QD-IBSC fully fabricated at the IES-UPM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphatidylserine (PtdSer) synthesis in Chinese hamster ovary (CHO) cells occurs through the exchange of l-serine with the base moiety of phosphatidylcholine or phosphatidylethanolamine. The synthesis is depressed on the addition of PtdSer to the culture medium. A CHO cell mutant named mutant 29, whose PtdSer biosynthesis is highly resistant to this depression by exogenous PtdSer, has been isolated from CHO-K1 cells. In the present study, the PtdSer-resistant PtdSer biosynthesis in the mutant was traced to a point mutation in the PtdSer synthase I gene, pssA, resulting in the replacement of Arg-95 of the synthase by lysine. Introduction of the mutant pssA cDNA, but not the wild-type pssA cDNA, into CHO-K1 cells induced the PtdSer-resistant PtdSer biosynthesis. In a cell-free system, the serine base-exchange activity of the wild-type pssA-transfected cells was inhibited by PtdSer, but that of the mutant pssA-transfected cells was resistant to the inhibition. Like the mutant 29 cells, the mutant pssA-transfected cells grown without exogenous PtdSer exhibited an ≈2-fold increase in the cellular PtdSer level compared with that in CHO-K1 cells, although the wild-type pssA-transfected cells did not exhibit such a significant increase. These results indicated that the inhibition of PtdSer synthase I by PtdSer is essential for the maintenance of a normal PtdSer level in CHO-K1 cells and that Arg-95 of the synthase is a crucial residue for the inhibition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae Sec7 protein (ySec7p), which is an important component of the yeast secretory pathway, contains a sequence of ≈200 amino acids referred to as a Sec7 domain. Similar Sec7 domain sequences have been recognized in several guanine nucleotide-exchange proteins (GEPs) for ADP ribosylation factors (ARFs). ARFs are ≈20-kDa GTPases that regulate intracellular vesicular membrane trafficking and activate phospholipase D. GEPs activate ARFs by catalyzing the replacement of bound GDP with GTP. We, therefore, undertook to determine whether a Sec7 domain itself could catalyze nucleotide exchange on ARF and found that it exhibited brefeldin A (BFA)-inhibitable ARF GEP activity. BFA is known to inhibit ARF GEP activity in Golgi membranes, thereby causing reversible apparent dissolution of the Golgi complex in many cells. The His6-tagged Sec7 domain from ySec7p (rySec7d) synthesized in Escherichia coli enhanced binding of guanosine 5′-[γ-[35S]thio]triphosphate by recombinant yeast ARF1 (ryARF1) and ryARF2 but not by ryARF3. The effects of rySec7d on ryARF2 were inhibited by BFA in a concentration-dependent manner but not by inactive analogues of BFA (B-17, B-27, and B-36). rySec7d also promoted BFA-sensitive guanosine 5′-[γ-thio]triphosphate binding by nonmyristoylated recombinant human ARF1 (rhARF1), rhARF5, and rhARF6, although the effect on rhARF6 was very small. These results are consistent with the conclusion that the yeast Sec7 domain itself contains the elements necessary for ARF GEP activity and its inhibition by BFA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Chinese hamster ovary (CHO) mutant UV40 cell line is hypersensitive to UV and ionizing radiation, simple alkylating agents, and DNA cross-linking agents. The mutant cells also have a high level of spontaneous chromosomal aberrations and 3-fold elevated sister chromatid exchange. We cloned and sequenced a human cDNA, designated XRCC9, that partially corrected the hypersensitivity of UV40 to mitomycin C, cisplatin, ethyl methanesulfonate, UV, and γ-radiation. The spontaneous chromosomal aberrations in XRCC9 cDNA transformants were almost fully corrected whereas sister chromatid exchanges were unchanged. The XRCC9 genomic sequence was cloned and mapped to chromosome 9p13. The translated XRCC9 sequence of 622 amino acids has no similarity with known proteins. The 2.5-kb XRCC9 mRNA seen in the parental cells was undetectable in UV40 cells. The mRNA levels in testis were up to 10-fold higher compared with other human tissues and up to 100-fold higher compared with other baboon tissues. XRCC9 is a candidate tumor suppressor gene that might operate in a postreplication repair or a cell cycle checkpoint function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A key step in the conversion of solar energy into chemical energy by photosynthetic reaction centers (RCs) occurs at the level of the two quinones, QA and QB, where electron transfer couples to proton transfer. A great deal of our understanding of the mechanisms of these coupled reactions relies on the seminal work of Okamura et al. [Okamura, M. Y., Isaacson, R. A., & Feher, G. (1975) Proc. Natl. Acad. Sci. USA 88, 3491–3495], who were able to extract with detergents the firmly bound ubiquinone QA from the RC of Rhodobacter sphaeroides and reconstitute the site with extraneous quinones. Up to now a comparable protocol was lacking for the RC of Rhodopseudomonas viridis despite the fact that its QA site, which contains 2-methyl-3-nonaprenyl-1,4-naphthoquinone (menaquinone-9), has provided the best x-ray structure available. Fourier transform infrared difference spectroscopy, together with the use of isotopically labeled quinones, can probe the interaction of QA with the RC protein. We establish that a simple incubation procedure of isolated RCs of Rp. viridis with an excess of extraneous quinone allows the menaquinone-9 in the QA site to be almost quantitatively replaced either by vitamin K1, a close analogue of menaquinone-9, or by ubiquinone. To our knowledge, this is the first report of quinone exchange in bacterial photosynthesis. The Fourier transform infrared data on the quinone and semiquinone vibrations show a close similarity in the bonding interactions of vitamin K1 with the protein at the QA site of Rp. viridis and Rb. sphaeroides, whereas for ubiquinone these interactions are significantly different. The results are interpreted in terms of slightly inequivalent quinone–protein interactions by comparison with the crystallographic data available for the QA site of the two RCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Okadaic acid (OA) is a strong tumor promoter of mouse skin carcinogenesis and also a potent inhibitor of serine/threonine protein phosphatases. OA induces various genetic alterations in cultured cells, such as diphtheria-toxin-resistance mutations, sister chromatid exchange, exclusion of exogenous transforming oncogenes, and gene amplification. The present study revealed that it caused minisatellite mutation (MSM) at a high frequency in NIH 3T3 cells, although no microsatellite mutation was found. Nine of 31 clones (29%) exhibited MSM after 6 days of OA treatment, as opposed to only 1 of 30 clones (3%) without OA exposure. Moreover, NIH 3T3 cells treated with OA acquired tumorigenicity in nude mice, giving rise to 7 tumors within 25 weeks in 20 sites where 3 × 106 cells were injected. In contrast, the same numbers of untreated cells gave rise to only one tumor, and the tumor grew much slower. All of three OA-induced tumors examined manifested the MSM. The findings thus point to a molecular mechanism by which OA could function as a tumor promoter, and also the biological relevance of the induction of MSM in the tumorigenic process by OA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Imaging of H217O has a number of important applications. Mapping the distribution of H217O produced by oxidative metabolism of 17O-enriched oxygen gas may lead to a new method of metabolic functional imaging; regional cerebral blood flow also can be measured by measuring the H217O distribution after the injection of 17O-enriched physiological saline solution. Previous studies have proposed a method for indirect detection of 17O. The method is based on the shortening of the proton T2 in H217O solutions, caused by the residual 17O-1H scalar coupling and transferred to the bulk water via fast chemical exchange. It has been shown that the proton T2 of H217O solutions can be restored to that of H216O by irradiating the resonance frequency of the 17O nucleus. The indirect 17O image thus is obtained by taking the difference between two T2-weighted spin-echo images: one acquired after irradiation of the 17O resonance and one acquired without irradiation. It also has been established that, at relatively low concentrations of H217O, the indirect method yields an image that quantitatively reflects the H217O distribution in the sample. The method is referred to as PRIMO (proton imaging of oxygen). In this work, we show in vivo proton images of the H217O distribution in a rat brain after an i.v. injection of H217O-enriched physiological saline solution. Implementing the indirect detection method in an echo-planar imaging sequence enabled obtaining H217O images with good spatial and temporal resolution of few seconds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signal transduction pathways that mediate activation of serum response factor (SRF) by heterotrimeric G protein α subunits were characterized in transfection systems. Gαq, Gα12, and Gα13, but not Gαi, activate SRF through RhoA. When Gαq, α12, or α13 were coexpressed with a Rho-specific guanine nucleotide exchange factor GEF115, Gα13, but not Gαq or Gα12, showed synergistic activation of SRF with GEF115. The synergy between Gα13 and GEF115 depends on the N-terminal part of GEF115, and there was no synergistic effect between Gα13 and another Rho-specific exchange factor Lbc. In addition, the Dbl-homology (DH)-domain-deletion mutant of GEF115 inhibited Gα13- and Gα12-induced, but not GEF115 itself- or Gαq-induced, SRF activation. The DH-domain-deletion mutant also suppressed thrombin- and lysophosphatidic acid-induced SRF activation in NIH 3T3 cells, probably by inhibition of Gα12/13. The N-terminal part of GEF115 contains a sequence motif that is homologous to the regulator of G protein signaling (RGS) domain of RGS12. RGS12 can inhibit both Gα12 and Gα13. Thus, the inhibition of Gα12/13 by the DH-deletion mutant may be due to the RGS activity of the mutant. The synergism between Gα13 and GEF115 indicates that GEF115 mediates Gα13-induced activation of Rho and SRF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ras proteins, key regulators of growth, differentiation, and malignant transformation, recently have been implicated in synaptic function and region-specific learning and memory functions in the brain. Rap proteins, members of the Ras small G protein superfamily, can inhibit Ras signaling through the Ras/Raf-1/mitogen-activated protein (MAP) kinase pathway or, through B-Raf, can activate MAP kinase. Rap and Ras proteins both can be activated through guanine nucleotide exchange factors (GEFs). Many Ras GEFs, but to date only one Rap GEF, have been identified. We now report the cloning of a brain-enriched gene, CalDAG-GEFI, which has substrate specificity for Rap1A, dual binding domains for calcium (Ca2+) and diacylglycerol (DAG), and enriched expression in brain basal ganglia pathways and their axon-terminal regions. Expression of CalDAG-GEFI activates Rap1A and inhibits Ras-dependent activation of the Erk/MAP kinase cascade in 293T cells. Ca2+ ionophore and phorbol ester strongly and additively enhance this Rap1A activation. By contrast, CalDAG-GEFII, a second CalDAG-GEF family member that we cloned and found identical to RasGRP [Ebinu, J. O., Bottorff, D. A., Chan, E. Y. W., Stang, S. L., Dunn, R. J. & Stone, J. C. (1998) Science 280, 1082–1088], exhibits a different brain expression pattern and fails to activate Rap1A, but activates H-Ras, R-Ras, and the Erk/MAP kinase cascade under Ca2+ and DAG modulation. We propose that CalDAG-GEF proteins have a critical neuronal function in determining the relative activation of Ras and Rap1 signaling induced by Ca2+ and DAG mobilization. The expression of CalDAG-GEFI and CalDAG-GEFII in hematopoietic organs suggests that such control may have broad significance in Ras/Rap regulation of normal and malignant states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The HLA class II-associated invariant chain (Ii)-derived peptide (CLIP) occupies the peptide binding groove during assembly in the endoplasmic reticulum, travels with HLA class II to endosomal compartments, and is subsequently released to allow binding of antigenic peptides. We investigated whether the exchange of CLIP with a known T helper epitope at the DNA level would lead to efficient loading of this helper epitope onto HLA class II. For this purpose, a versatile Ii-encoding expression vector was created in which CLIP can be replaced with a helper epitope of choice. Upon supertransfection of HLA-DR1-transfected 293 cells with an Ii vector encoding a known T helper epitope (HA307–319), predominantly length variants of this epitope were detected in association with the HLA-DR1 molecules of these cells. Moreover, this transfectant was efficiently recognized by a peptide-specific T helper clone (HA1.7). The results suggest that this type of Ii vector can be used to create potent class II+ cellular vaccines in which defined T cell epitopes are continuously synthesized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 200-kDa guanine nucleotide-exchange protein (p200 or GEP) for ADP-ribosylation factors 1 and 3 (ARF1 and ARF3) that was inhibited by brefeldin A (BFA) was purified earlier from cytosol of bovine brain cortex. Amino acid sequences of four tryptic peptides were 47% identical to that of Sec7 from Saccharomyces cerevisiae, which is involved in vesicular trafficking in the Golgi. By using a PCR-based procedure with two degenerate primers representing sequences of these peptides, a product similar in size to Sec7 that contained the peptide sequences was generated. Two oligonucleotides based on this product were used to screen a bovine brain library, which yielded one clone that was a partial cDNA for p200. The remainder of the cDNA was obtained by 5′ and 3′ rapid amplification of cDNA ends (RACE). The ORF of the cDNA encodes a protein of 1,849 amino acids (≈208 kDa) that is 33% identical to yeast Sec7 and 50% identical in the Sec7 domain region. On Northern blot analysis of bovine tissues, a ≈7.4-kb mRNA was identified that hybridized with a p200 probe; it was abundant in kidney, somewhat less abundant in lung, spleen, and brain, and still less abundant in heart. A six-His-tagged fusion protein synthesized in baculovirus-infected Sf9 cells demonstrated BFA-inhibited GEP activity, confirming that BFA sensitivity is an intrinsic property of this ARF GEP and not conferred by another protein component of the complex from which p200 was originally purified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix-assisted laser desorption ionization–time-of-flight mass spectrometry was used to identify peptic fragments from protein complexes that retained deuterium under hydrogen exchange conditions due to decreased solvent accessibility at the interface of the complex. Short deuteration times allowed preferential labeling of rapidly exchanging surface amides so that primarily solvent accessibility changes and not conformational changes were detected. A single mass spectrum of the peptic digest mixture was analyzed to determine the deuterium content of all proteolytic fragments of the protein. The protein–protein interface was reliably indicated by those peptides that retained more deuterons in the complex compared with control experiments in which only one protein was present. The method was used to identify the kinase inhibitor [PKI(5–24)] and ATP-binding sites in the cyclic-AMP-dependent protein kinase. Three overlapping peptides identified the ATP-binding site, three overlapping peptides identified the glycine-rich loop, and two peptides identified the PKI(5–24)-binding site. A complex of unknown structure also was analyzed, human α-thrombin bound to an 83-aa fragment of human thrombomodulin [TMEGF(4–5)]. Five peptides from thrombin showed significantly decreased solvent accessibility in the complex. Three peptides identified the anion-binding exosite I, confirming ligand competition experiments. Two peptides identified a new region of thrombin near the active site providing a potential mechanism of how thrombomodulin alters thrombin substrate specificity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In antigen presentation to CD4+ T cells, proteins are degraded to peptide fragments and loaded onto class II MHC molecules in a process involving the peptide exchange factors H-2M (murine) or HLA-DM (human). In many antigen-presenting cells these processes occur in intracellular endosomal compartments, where peptides are generated and loaded onto class II MHC proteins for subsequent transport to the surface and presentation to T cells. Here, we provide evidence for an additional antigen-processing pathway in immature dendritic cells (DC). Immature DC express at the cell surface empty or peptide-receptive class II MHC molecules, as well as H-2M or HLA-DM. Secreted DC proteases act extracellularly to process intact proteins into antigenic peptides. Peptides produced by such activity are efficiently loaded onto cell surface class II MHC molecules. Together these elements comprise an unusual extracellular presentation pathway in which antigen processing and peptide loading can occur entirely outside of the cell.