898 resultados para PROSTATE CANCER
Resumo:
Background Prostate cancer (PCa) frequently relapses after hormone ablation therapy. Unfortunately, once progressed to the castration resistant stage, the disease is regarded as incurable as prostate cancer cells are highly resistant to conventional chemotherapy. Method We recently reported that the two natural compounds polysaccharopeptide (PSP) and Gamma-tocotrienols (γ-T3) possessed potent anti-cancer activities through targeting of CSCs. In the present study, using both prostate cancer cell line and xenograft models, we seek to investigate the therapeutic potential of combining γ-T3 and PSP in the treatment of prostate cancer. Result We showed that in the presence of PSP, γ-T3 treatment induce a drastic activation of AMP-activated protein kinase (AMPK). This was accompanied with inactivation of acetyl-CoA carboxylase (ACC), as evidenced by the increased phosphorylation levels at Ser 79. In addition, PSP treatment also sensitized cancer cells toward γ-T3-induced cytotoxicity. Furthermore, we demonstrated for the first time that combination of PSP and γ-T3 treaments significantly reduced the growth of prostate tumor in vivo. Conclusion Our results indicate that PSP and γ-T3 treaments may have synergistic anti-cancer effect in vitro and in vivo, which warrants further investigation as a potential combination therapy for the treatment of cancer.
Resumo:
Cancer is the second leading cause of death with 14 million new cases and 8.2 million cancer-related deaths worldwide in 2012. Despite the progress made in cancer therapies, neoplastic diseases are still a major therapeutic challenge notably because of intra- and inter-malignant tumour heterogeneity and adaptation/escape of malignant cells to/from treatment. New targeted therapies need to be developed to improve our medical arsenal and counter-act cancer progression. Human kallikrein-related peptidases (KLKs) are secreted serine peptidases which are aberrantly expressed in many cancers and have great potential in developing targeted therapies. The potential of KLKs as cancer biomarkers is well established since the demonstration of the association between KLK3/PSA (prostate specific antigen) levels and prostate cancer progression. In addition, a constantly increasing number of in vitro and in vivo studies demonstrate the functional involvement of KLKs in cancer-related processes. These peptidases are now considered key players in the regulation of cancer cell growth, migration, invasion, chemo-resistance, and importantly, in mediating interactions between cancer cells and other cell populations found in the tumour microenvironment to facilitate cancer progression. These functional roles of KLKs in a cancer context further highlight their potential in designing new anti-cancer approaches. In this review, we comprehensively review the biochemical features of KLKs, their functional roles in carcinogenesis, followed by the latest developments and the successful utility of KLK-based therapeutics in counteracting cancer progression.
Resumo:
Purpose The aim of the present study was to determine if exercise intensity impacts upon the psychosocial responses of breast and prostate cancer survivors to a rehabilitation program. Methods Eighty-seven prostate and 72 breast cancer survivors participated in an 8-week exercise and supportive group psychotherapy intervention (n=84) or control (n=75) group. Intervention participants were randomized to low-to-moderate intensity exercise (LIG; n=44; 60–65 % VO2peak, 50–65 % one repetition maximum (1RM)) or moderate-to-high intensity exercise (HIG; n=40; 75–80 % VO2peak, 65–80 % 1RM) while controls continued usual care. Before and after the 8 weeks, all participants completed the Functional Assessment of Cancer Therapy-Breast or -Prostate to assess quality of life (QOL) and Behavioural Regulations of Exercise Version 2 for exercise motivation. Intervention participants also completed a follow-up assessment 4 months post-intervention. Results All three groups improved in QOL from baseline to post-intervention, with no significant differences. From postintervention to follow-up, the LIG and HIG similarly maintained QOL scores. Between baseline and post-intervention, both intervention arms improved their motivation to exercise compared to the controls (p=0.004). At the 4-month followup, the HIG had maintained their overall exercise motivation (p<0.001) and both domains of intrinsic motivation (identified regulation, p=0.047; intrinsic regulation, p=0.007); however, the LIG had regressed. Conclusions The structured intervention was successful at improving autonomous exercise motivation, regardless of exercise intensity. However, only those participants who had exercised at a higher intensity sustained their improvement. Intervention participation did not improve QOL more than controls. Implications for Cancer Survivors Higher-intensity exercise is more likely to result in more sustainable increases in motivation to exercise among cancer survivors.
Resumo:
Prostate cancer is the most common noncutaneous malignancy and the second leading cause of cancer mortality in men. In 2004, 5237 new cases were diagnosed and altogether 25 664 men suffered from prostate cancer in Finland (Suomen Syöpärekisteri). Although extensively investigated, we still have a very rudimentary understanding of the molecular mechanisms leading to the frequent transformation of the prostate epithelium. Prostate cancer is characterized by several unique features including the multifocal origin of tumors and extreme resistance to chemotherapy, and new treatment options are therefore urgently needed. The integrity of genomic DNA is constantly challenged by genotoxic insults. Cellular responses to DNA damage involve elegant checkpoint cascades enforcing cell cycle arrest, thus facilitating damage repair, apoptosis or cellular senescence. Cellular DNA damage triggers the activation of tumor suppressor protein p53 and Wee1 kinase which act as executors of the cellular checkpoint responses. These are essential for genomic integrity, and are activated in early stages of tumorigenesis in order to function as barriers against tumor formation. Our work establishes that the primary human prostatic epithelial cells and prostatic epithelium have unexpectedly indulgent checkpoint surveillance. This is evidenced by the absence of inhibitory Tyr15 phosphorylation on Cdk2, lack of p53 response, radioresistant DNA synthesis, lack of G1/S and G2/M phase arrest, and presence of persistent gammaH2AX damage foci. We ascribe the absence of inhibitory Tyr15 phosphorylation to low levels of Wee1A, a tyrosine kinase and negative regulator of cell cycle progression. Ectopic Wee1A kinase restored Cdk2-Tyr15 phosphorylation and efficiently rescued the ionizing radiation-induced checkpoints in the human prostatic epithelial cells. As variability in the DNA damage responses has been shown to underlie susceptibility to cancer, our results imply that a suboptimal checkpoint arrest may greatly increase the accumulation of genetic lesions in the prostate epithelia. We also show that small molecules can restore p53 function in prostatic epithelial cells and may serve as a paradigm for the development of future therapeutic agents for the treatment of prostate cancer We hypothesize that the prostate has evolved to activate the damage surveillance pathways and molecules involved in these pathways only to certain stresses in extreme circumstances. In doing so, this organ inadvertently made itself vulnerable to genotoxic stress, which may have implications in malignant transformation. Recognition of the limited activity of p53 and Wee1 in the prostate could drive mechanism-based discovery of preventative and therapeutic agents.
Resumo:
Purpose: To explore the fatigue self-management behaviors and factors associated with effectiveness of these behaviors in patients with advanced cancer. Design: Prospective longitudinal interviewer-administered survey. Setting: A tertiary cancer center in Queensland Australia. Sample: One hundred fifty two outpatients with metastatic breast, lung, colorectal and prostate cancer experiencing fatigue (>3/10) were recruited. Main Research Variables: Fatigue self-management behaviors outcomes (perceived effectiveness, self-efficacy and frequency), medical/demographic characteristics (including sites of primary cancer and metastasis, comorbidity, performance status), social support, depressive, anxiety, and other symptoms were assessed. Findings: The participants reported moderate levels of fatigue at baseline (M=5.85, SD 1.44), and maintained moderate levels at 4 weeks and 8 weeks. On average, participants consistently used approximately nine behaviors at each time point. Factors significantly associated with higher levels of perceived effectiveness of fatigue self-management behaviors were higher self-efficacy (p<.001), higher education level (p=.02), and lower levels of depressive symptoms (p=.04). Conclusions: The findings of this study demonstrate that patients with cancer, even with advanced disease, still want and are able to use a number of behaviors to control their fatigue. Self-management interventions that aim to enhance self-efficacy and address any concurrent depressive symptoms have the potential to reduce fatigue severity. Implications for Nursing: Nurses are well positioned to play a key role in supporting patients in their fatigue self-management. Knowledge Translation: This study particularly focused on the perspectives of patients about fatigue self-management, highlighting a number of issues requiring further attention in clinical practice and the potential for future research.
Resumo:
Prostate cancer (PCa) is the most commonly diagnosed non-skin cancer and second leading cause of cancer-related death of men in developed countries. Measurement of prostate specific antigen (PSA) is a very sensitive method for diagnosing and monitoring of prostate cancer (PCa), but the specificity needs improvement. Measurements of different molecular forms of PSA have been shown to improve differentiation between PCa and benign prostatic diseases. However, accurate measurement of some isoforms has not been achieved in previous assays. The aim of the present study was to develop new assays that reliably measure enzymatically active PSA, PSA-α1-chymotryposin (PSA-ACT) and PSA-α1-protease inhibitor (PSA-API), and to evaluate their diagnostic value. Double-label immunofluorometric assays using a novel monoclonal antibody (MAb) and another antibody to either free PSA (fPSA) or total PSA (tPSA) were developed and used to measure PSA-ACT and fPSA or tPSA at the same time. These assays provide enough sensitivity for measurement of PSA-ACT in sera with low PSA levels. The results obtained confirmed that proportion of PSA-ACT to tPSA (%PSA-ACT) was as useful as proportion of fPSA to tPSA (%fPSA) for discrimination between PCa and benign prostatic hyperplasia (BPH). We developed an immunoassay for detection of PSA-API based on proximity ligation, which improved assay sensitivity 10-fold compared with conventional assays. Our results confirmed previous findings that the PSA-API level is somewhat lower in men with than without PCa, and the combination of %fPSA and proportion of PSA-API to tPSA (%PSA-API) provides diagnostic improvement compared with either method alone. Assays based on this principle should be applicable to other immunoassays in which the nonspecific background is a problem. An immunopeptidometric sandwich assay (IPMA) was developed to measure the enzymatically active PSA. This assay showed high specificity, but sensitivity was not good enough for measurement of PSA concentrations in the gray zone, 2-10 µg/L, in which tPSA does not efficiently differentiate between PCa and BPH. We further developed a solid-phase proximity ligation immunoassay, which provided a 10-fold improvement in sensitivity. This proof of concept study shows that peptides reacting with proteins are potentially useful for sensitive and specific measurement of protein variants for which specific MAbs cannot be obtained.
Resumo:
The Children’s Cancer Institute in Sydney recently launched an ambitious program. From early next year, scientists will analyse the unique cancer cells of 12 children diagnosed with the most aggressive forms of the disease to find the best treatment for each child. By 2020, they aim to have these individualised treatment options available to all children diagnosed with cancers that have a less than 30% survival rate. This way of tailoring treatment to each person is known as personalised medicine, and advances in DNA sequencing have paved the way for a new era in cancer management.
Resumo:
Prostate cancer (PCa) frequently relapses after hormone ablation therapy. Unfortunately, once progressed to the castration resistant stage, the disease is regarded as incurable as prostate tumours are highly resistant to conventional chemotherapy. Therefore, an effective treatment strategy is urgently needed for improving the treatment outcome of the patients.
Resumo:
Aim: To identify flutamide regulated genes in the rat ventral prostate. Methods: Total RNA from ventral prostates control and flutamide treated rats were isolated. Differentially expressed transcripts were identified using display reverse transcriptase polymerase chain reaction. The effect of castration on the expression of regulated transcripts was studied. Results: We have identified beta 2-microglobulin, cytoplasmic FMR1 protein 2 and pumilio 1 as flutamide induced and spermine binding protein and ribophorin II as flutamide targets in the rat ventral prostate. Although flutamide treatment caused an induction of pumilio I mRNA, had no effect. Conclusion: Castration and flutamide treatments exert differential effects on gene expression. might also have direct AR independent effects, which might have implications in the emergence of androgen dent prostate cancer and the failure of flutamide therapy.
Resumo:
The insulin‑like growth factor 1 receptor (IGF1R) pathway plays an important role in the pathogenesis of non‑small cell lung cancer (NSCLC) and also provides a mechanism of resistance to targeted therapies. IGF1R is therefore an ideal therapeutic target and several inhibitors have entered clinical trials. However, thus far the response to these inhibitors has been poor, highlighting the importance of predictive biomarkers to identify patient cohorts who will benefit from these targeted agents. It is well‑documented that mutations and/or deletions in the epidermal growth factor receptor (EGFR) tyrosine kinase (TK) domain predict sensitivity of NSCLC patients to EGFR TK inhibitors. Single‑nucleotide polymorphisms (SNPs) in the IGF pathway have been associated with disease, including breast and prostate cancer. The aim of the present study was to elucidate whether the IGF1R TK domain harbours SNPs, somatic mutations or deletions in NSCLC patients and correlates the mutation status to patient clinicopathological data and prognosis. Initially 100 NSCLC patients were screened for mutations/deletions in the IGF1R TK domain (exons 16‑21) by sequencing analysis. Following the identification of SNP rs2229765, a further 98 NSCLC patients and 866 healthy disease‑free control patients were genotyped using an SNP assay. The synonymous SNP (rs2229765) was the only aberrant base change identified in the IGF1R TK domain of 100 NSCLC patients initially analysed. SNP rs2229765 was detected in exon 16 and was found to have no significant association between IGF1R expression and survival. The GA genotype was identified in 53.5 and 49.4% of NSCLC patients and control individuals, respectively. No significant difference was found in the genotype (P=0.5487) or allele (P=0.9082) frequencies between the case and control group. The present findings indicate that in contrast to the EGFR TK domain, the IGF1R TK domain is not frequently mutated in NSCLC patients. The synonymous SNP (rs2229765) had no significant association between IGF1R expression and survival in the cohort of NSCLC patients.
Resumo:
Several lines of evidence suggest that cancer progression is associated with up-regulation or reactivation of telomerase and the underlying mechanism remains an active area of research. The heterotrimeric MRN complex, consisting of Mre11, Rad50 and Nbs1, which is required for the repair of double-strand breaks, plays a key role in telomere length maintenance. In this study, we show significant differences in the levels of expression of MRN complex subunits among various cancer cells and somatic cells. Notably, siRNA-mediated depletion of any of the subunits of MRN complex led to complete ablation of other subunits of the complex. Treatment of leukemia and prostate cancer cells with etoposide lead to increased expression of MRN complex subunits, with concomitant decrease in the levels of telomerase activity, compared to breast cancer cells. These studies raise the possibility of developing anti-cancer drugs targeting MRN complex subunits to sensitize a subset of cancer cells to radio- and/or chemotherapy. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Prostate cancer is one of the most prevalent cancer types in men. The development of prostate tumors is known to require androgen exposure, and several pathways governing cell growth are deregulated in prostate tumorigenesis. Recent genetic studies have revealed that complex gene fusions and copy - number alterations are frequent in prostate cancer, a unique feature among solid tumors. These chromosomal aberrations are though to arise as a consequence of faulty repair of DNA double strand breaks (DSB). Most repair mechanisms have been studied in detail in cancer cell lines, but how DNA damage is detected and repaired in normal differentiated human cells has not been widely addressed. The events leading to the gene fusions in prostate cancer are under rigorous studies, as they not only shed light on the basic pathobiologic mechanisms but may also produce molecular targets for prostate cancer treatment and prevention. Prostate and seminal vesicles are part of the male reproductive system. They share similar structure and function but differ dramatically in their cancer incidence. Approximately fifty primary seminal vesicle carcinomas have been reported worldwide. Surprisingly, only little is known on why seminal vesicles are resistant to neoplastic changes. As both tissues are androgen dependent, it is a mystery that androgen signaling would only lead to tumors in prostate tissue. In this work, we set up novel ex vivo human tissue culture models of prostate and seminal vesicles, and used them to study how DNA damage is recognized in normal epithelium. One of the major DNA - damage inducible pathways, mediated by the ATM kinase, was robustly activated in all main cell types of both tissues. Interestingly, we discovered that secretory epithelial cells had less histone variant H2A.X and after DNA damage lower levels of H2AX were phosphorylated on serine 139 (γH2AX) than in basal or stromal cells. γH2AX has been considered essential for efficient DSB repair, but as there were no significant differences in the γH2AX levels between the two tissues, it seems more likely that the role of γH2AX is less important in postmitotic cells. We also gained insight into the regulation of p53, an important transcription factor that protects genomic integrity via multiple mechanisms, in human tissues. DSBs did not lead to a pronounced activation of p53, but treatments causing transcriptional stress, on the other hand, were able to launch a notable p53 response in both tissue types. In general, ex vivo culturing of human tissues provided unique means to study differentiated cells in their relevant tissue context, and is suited for testing novel therapeutic drugs before clinical trials. In order to study how prostate and seminal vesicle epithelial cells are able to activate DNA damage induced cell cycle checkpoints, we used primary cultures of prostate and seminal vesicle epithelial cells. To our knowledge, we are the first to report isolation of human primary seminal vesicle cells. Surprisingly, human prostate epithelial cells did not activate cell cycle checkpoints after DSBs in part due to low levels of Wee1A, a kinase regulating CDK activity, while primary seminal vesicle epithelial cells possessed proficient cell cycle checkpoints and expressed high levels of Wee1A. Similarly, seminal vesicle cells showed a distinct activation of the p53 - pathway after DSBs that did not occur in prostate epithelial cells. This indicates that p53 protein function is under different control mechanisms in the two cell types, which together with proficient cell cycle checkpoints may be crucial in protecting seminal vesicles from endogenous and exogenous DNA damaging factors and, as a consequence, from carcinogenesis. These data indicate that two very similar organs of male reproductive system do not respond to DNA damage similarly. The differentiated, non - replicating cells of both tissues were able to recognize DSBs, but under proliferation human prostate epithelial cells had deficient activation of the DNA damage response. This suggests that prostate epithelium is most vulnerable to accumulating genomic aberrations under conditions where it needs to proliferate, for example after inflammatory cellular damage.
Resumo:
Growth of multicellular organisms depends on maintenance of proper balance between proliferation and differentiation. Any disturbance in this balance in animal cells can lead to cancer. Experimental evidence is provided to conclude with special reference to the action of follicle-stimulating hormone (FSH) on Sertoli cells, and luteinizing hormone (LH) on Leydig cells that these hormones exert a differential action on their target cells, i.e., stimulate proliferation when the cells are in an undifferentiated state which is the situation with cancer cells and promote only functional parameters when the cell are fully differentiated. Hormones and growth factors play a key role in cell proliferation, differentiation, and apoptosis. There is a growing body of evidence that various tumors express some hormones at high levels as well as their cognate receptors indicating the possibility of a role in progression of cancer. Hormones such as LH, FSH, and thyroid-stimulating hormone have been reported to stimulate cell proliferation and act as tumor promoter in a variety of hormone-dependent cancers including gonads, lung, thyroid, uterus, breast, prostate, etc. This review summarizes evidence to conclude that these hormones are produced by some cancer tissues to promote their own growth. Also an attempt is made to explain the significance of the differential action of hormones in progression of cancer with special reference to prostate cancer.
Resumo:
Background: Gastrointestinal stromal tumours (GISTs) are the most common primary mesenchymal neoplasia in the gastrointestinal tract, although they represent only a small fraction of total gastrointestinal malignancies in adults (<2%). GISTs can be located at any level of the gastrointestinal tract; the stomach is the most common location (60-70%), in contrast to the rectum, which is most rare (4%). When a GIST invades into the adjacent prostate tissue, it can simulate prostate cancer. In this study, we report on a case comprising the unexpected collision between a rectal GIST tumour and a prostatic adenocarcinoma. Findings: We describe the complexity of the clinical, endoscopic and radiological diagnosis, of the differential diagnosis based on tumour biopsy, and of the role of neoadjuvant therapy using imatinib prior to surgical treatment. Conclusions: Although isolated cases of coexisting GISTs and prostatic adenocarcinomas have reviously been described, this is the first reported case in the medical literature of a collision tumour involving a rectal GIST and prostatic adenocarcinoma components.