946 resultados para PREDICTIVE MODELS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

experimental design, mixed model, random coefficient regression model, population pharmacokinetics, approximate design

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Mathematik, Diss., 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Informatik, Diss., 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Mathematik, Diss., 2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Mathematik, Diss., 2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Wirtschaftswiss., Diss., 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Mathematik, Diss., 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Otto-von-Guericke-Universität Magdeburg, Fakultät für Naturwissenschaften, Univ., Dissertation, 2016

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This comment corrects the errors in the estimation process that appear in Martins (2001). The first error is in the parametric probit estimation, as the previously presented results do not maximize the log-likelihood function. In the global maximum more variables become significant. As for the semiparametric estimation method, the kernel function used in Martins (2001) can take on both positive and negative values, which implies that the participation probability estimates may be outside the interval [0,1]. We have solved the problem by applying local smoothing in the kernel estimation, as suggested by Klein and Spady (1993).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides empirical evidence that continuous time models with one factor of volatility, in some conditions, are able to fit the main characteristics of financial data. It also reports the importance of the feedback factor in capturing the strong volatility clustering of data, caused by a possible change in the pattern of volatility in the last part of the sample. We use the Efficient Method of Moments (EMM) by Gallant and Tauchen (1996) to estimate logarithmic models with one and two stochastic volatility factors (with and without feedback) and to select among them.