987 resultados para POROSITY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unique properties of bacterial nanocellulose (BNC) provide the basis for a wide range of applications in human and veterinary medicine, odontology, pharmaceuticals, acoustic and filter membranes, biotechnological devices, and in the food and paper industry. In this chapter, an overview of surface modifications of bacterial cellulose is presented. Depending on the envisaged applications, chemical modifications, incorporation of bioactive molecules, modification of the porosity, crystallinity, and biodegradability may be obtained, further enlarging the potential of BNC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Técnicas de Caracterização e Análise Química

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Biofísica e Bionanossistemas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mould, oxidation, porosity, zylinder head, aluminium, simulation casting

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative method of viral pollution determination for large volume of water using ferric hydroxide gel impregnated on the surface of glassfibre cartridge filter. The use of ferric hydroxide gel, impregnated on the surface of glassfibre cartridge filter enable us to recover 62.5% of virus (Poliomylitis type I, Lsc strain) exsogeneously added to 400 liters of tap-water. The virus concentrator system consists of four cartridge filters, in which the three first one are clarifiers, where the contaminants are removed physically, without significant virus loss at this stage. The last cartridge filter is impregnated with ferric hydroxide gel, where the virus is adsorbed. After the required volume of water has been processed, the last filter is removed from the system and the viruses are recovered from the gel, using 1 liter of glycine/NaOH buffer, at pH 11. Immediately the eluate is clarified through series of cellulose acetate membranes mounted in a 142mm Millipore filter. For the second step of virus concentration, HC1 1N is added slowly to the eluate to achieve pH 3.5-4. MgC1, is added to give a final concentration of 0.05M and the viruses are readsorbed on a 0.45 , porosity (HA) cellulose acetate membrane, mounted in a 90 mm Millipore filter. The viruses are recovered using the same eluent plus 10% of fetal calf serum, to a final volume of 3 ml. In this way, it was possible to concentrate virus from 400 liters of tap-water, into 1 liter in the first stage of virus concentration and just to 3 ml of final volume in a second step. The efficiency, simplicity and low operational cost, provded by the method, make it feasible to study viral pollution of recreational and tap-water sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time-lapse crosshole ground-penetrating radar (GPR) data, collected while infiltration occurs, can provide valuable information regarding the hydraulic properties of the unsaturated zone. In particular, the stochastic inversion of such data provides estimates of parameter uncertainties, which are necessary for hydrological prediction and decision making. Here, we investigate the effect of different infiltration conditions on the stochastic inversion of time-lapse, zero-offset-profile, GPR data. Inversions are performed using a Bayesian Markov-chain-Monte-Carlo methodology. Our results clearly indicate that considering data collected during a forced infiltration test helps to better refine soil hydraulic properties compared to data collected under natural infiltration conditions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water transport in wood is vital for the survival of trees. With synchrotron radiation X-ray tomographic microscopy (SRXTM), it has become possible to characterize and quantify the three-dimensional (3D) network formed by vessels that are responsible for longitudinal transport. In the present study, the spatial size dependence of vessels and the organization inside single growth rings in terms of vessel-induced porosity was studied by SRXTM. Network characteristics, such as connectivity, were deduced by digital image analysis from the processed tomographic data and related to known complex network topologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Allegre et al. recently presented new experimental data regarding the dependence of the streaming potential coupling coefficient with the saturation of the water phase. Such experiments are important to model the self-potential response associated with the flow of water in the vadose zone and the electroseismic/seismoelectric conversions in unsaturated porous media. However, the approach used to interpret the data is questionable and the conclusions reached by Allegre et al. likely incorrect

Relevância:

10.00% 10.00%

Publicador:

Resumo:

X-ray microtomography has become a new tool in earth sciences to obtain non-destructive 3D-image data from geological objects in which variations in mineralogy, chemical composition and/or porosity create sufficient x-ray density contrasts.We present here first, preliminary results of an application to the external and internal morphology of Permian to Recent Larger Foraminifera. We use a SkyScan-1072 high-resolution desk-top micro-CT system. The system has a conical x-ray source with a spot size of about 5µm that runs at 20-100kV, 0-250µA, resulting in a maximal resolution of 5µm. X-ray transmission images are captured by a scintillator coupled via fibre optics to a 1024x1024 pixel 12-bit CCD. The object is placed between the x-ray source and the scintillator on a stub that rotates 360°around its vertical axis in steps as small as 0.24 degrees. Sample size is limited to 2 cm due to the absorption of geologic material for x-rays. The transmission images are back projected using a Feldkamp algorithm into a vertical stack of up to 1000 1Kx1K images that represent horizontal cuts of the object. This calculation takes 2 to several hours on a Double-Processor 2.4GHz PC. The stack of images (.bmp) can be visualized with any 3D-imaging software, used to produce cuts of Larger Foraminifera. Among other applications, the 3D-imaging software furnished by SkyScan can produce 3D-models by defining a threshold density value to distinguish "solid" from "void. Several models with variable threshold values and colors can be imbricated, rotated and cut together. The best results were obtained with microfossils devoid of chamber-filling cements (Permian, Eocene, Recent). However, even slight differences in cement mineralogy/composition can result in surprisingly good x-ray density contrasts.X-ray microtomography may develop into a powerful tool for larger microfossils with a complex internal structure, because it is non-destructive, requires no preparation of the specimens, and produces a true 3D-image data set. We will use these data sets in the future to produce cuts in any direction to compare them with arbitrary cuts of complex microfossils in thin sections. Many groups of benthic and planktonic foraminifera may become more easily determinable in thin section by this way.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new and original reagent based on the use of highly fluorescent cadmium telluride (CdTe) quantum dots (QDs) in aqueous solution is proposed to detect weak fingermarks in blood on non-porous surfaces. To assess the efficiency of this approach, comparisons were performed with one of the most efficient blood reagents on non-porous surfaces, Acid Yellow 7 (AY7). To this end, four non-porous surfaces were studied, i.e. glass, transparent polypropylene, black polyethylene, and aluminium foil. To evaluate the sensitivity of both reagents, sets of depleted fingermarks were prepared, using the same finger, initially soaked with blood, which was then successively applied on the same surface without recharging it with blood or latent secretions. The successive marks were then cut in halves and the halves treated separately with each reagent. The results showed that QDs were equally efficient to AY7 on glass, polyethylene and polypropylene surfaces, and were superior to AY7 on aluminium. The use of QDs in new, sensitive and highly efficient latent and blood mark detection techniques appears highly promising. Health and safety issues related to the use of cadmium are also discussed. It is suggested that applying QDs in aqueous solution (and not as a dry dusting powder) considerably lowers the toxicity risks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integration of geophysical data into the subsurface characterization problem has been shown in many cases to significantly improve hydrological knowledge by providing information at spatial scales and locations that is unattainable using conventional hydrological measurement techniques. The investigation of exactly how much benefit can be brought by geophysical data in terms of its effect on hydrological predictions, however, has received considerably less attention in the literature. Here, we examine the potential hydrological benefits brought by a recently introduced simulated annealing (SA) conditional stochastic simulation method designed for the assimilation of diverse hydrogeophysical data sets. We consider the specific case of integrating crosshole ground-penetrating radar (GPR) and borehole porosity log data to characterize the porosity distribution in saturated heterogeneous aquifers. In many cases, porosity is linked to hydraulic conductivity and thus to flow and transport behavior. To perform our evaluation, we first generate a number of synthetic porosity fields exhibiting varying degrees of spatial continuity and structural complexity. Next, we simulate the collection of crosshole GPR data between several boreholes in these fields, and the collection of porosity log data at the borehole locations. The inverted GPR data, together with the porosity logs, are then used to reconstruct the porosity field using the SA-based method, along with a number of other more elementary approaches. Assuming that the grid-cell-scale relationship between porosity and hydraulic conductivity is unique and known, the porosity realizations are then used in groundwater flow and contaminant transport simulations to assess the benefits and limitations of the different approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ceramic shell is a material mainly used for making foundry molds. This research demonstrates that ceramic shell can be used for making sculptures with exceptional definition in its finish. The research has identified a number of advantages of the material to meet the challenges of an artist during the making of a sculpture. The research has been developed in six stages: In the first stage data were collected from the chaff as the process material. This was the starting point for research. In the second stage, we have set the appropriate composition of the slurry, both in percentage and type of binder, and firing curve. To this end, we evaluated the application characteristics, thickness, drying, mechanical strength, the reduction coefficient and porosity. In the third stage it was observed that the husk is suitable for all types of materials acting as support. It was also found that the slurry can be used with various sculptural processes: modeling, molding using silicone or plaster mold, shuttering, with internal metal frame, and so on. In addition, we have established methods to repair and modify the husk by hand and power tools. In the fourth stage we have found ways to modify the surface of the husk with other minerals that affect the structure: introduction of filing of copper, bronze and iron in the slurry ceramics, different staining procedure in hot or cold, by enamel slip, and so on. In the fifth stage sculptures were made using the methods established in the previous stages, to verify this hypothesis. The sixth stage, which is annexed, contains a new method to process the ceramic shell as a mold in casting that emerged from the proven methods in the investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synchrotron radiation X-ray tomographic microscopy is a nondestructive method providing ultra-high-resolution 3D digital images of rock microstructures. We describe this method and, to demonstrate its wide applicability, we present 3D images of very different rock types: Berea sandstone, Fontainebleau sandstone, dolomite, calcitic dolomite, and three-phase magmatic glasses. For some samples, full and partial saturation scenarios are considered using oil, water, and air. The rock images precisely reveal the 3D rock microstructure, the pore space morphology, and the interfaces between fluids saturating the same pore. We provide the raw image data sets as online supplementary material, along with laboratory data describing the rock properties. By making these data sets available to other research groups, we aim to stimulate work based on digital rock images of high quality and high resolution. We also discuss and suggest possible applications and research directions that can be pursued on the basis of our data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a numerical approach, we explore wave-induced fluid flow effects in partially saturated porous rocks in which the gas-water saturation patterns are governed by mesoscopic heterogeneities associated with the dry frame properties. The link between the dry frame properties and the gas saturation is defined by the assumption of capillary pressure equilibrium, which in the presence of heterogeneity implies that neighbouring regions can exhibit different levels of saturation. To determine the equivalent attenuation and phase velocity of the synthetic rock samples considered in this study, we apply a numerical upscaling procedure, which permits to take into account mesoscopic heterogeneities associated with the dry frame properties as well as spatially continuous variations of the pore fluid properties. The multiscale nature of the fluid saturation is taken into account by locally computing the physical properties of an effective fluid, which are then used for the larger-scale simulations. We consider two sets of numerical experiments to analyse such effects in heterogeneous partially saturated porous media, where the saturation field is determined by variations in porosity and clay content, respectively. In both cases we also evaluate the seismic responses of corresponding binary, patchy-type saturation patterns. Our results indicate that significant attenuation and modest velocity dispersion effects take place in this kind of media for both binary patchy-type and spatially continuous gas saturation patterns and in particular in the presence of relatively small amounts of gas. The numerical experiments also show that the nature of the gas distribution patterns is a critical parameter controlling the seismic responses of these environments, since attenuation and velocity dispersion effects are much more significant and occur over a broader saturation range for binary patchy-type gas-water distributions. This analysis therefore suggests that the physical mechanisms governing partial saturation should be accounted for when analysing seismic data in a poroelastic framework. In this context, heterogeneities associated with the dry frame properties, which do not play important roles in wave-induced fluid flow processes per se, should be taken into account since they may determine the kind of gas distribution pattern taking place in the porous rock.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various compositions of synthetic calcium phosphates (CaP) have been proposed and their use has considerably increased over the past decades. Besides differences in physico-chemical properties, resorption and osseointegration, artificial CaP bone graft might differ in their resistance against biofilm formation. We investigated standardised cylinders of 5 different CaP bone grafts (cyclOS, chronOS (both β-TCP (tricalcium phosphate)), dicalcium phosphate (DCP), calcium-deficient hydroxyapatite (CDHA) and α-TCP). Various physico-chemical characterisations e.g., geometrical density, porosity, and specific surface area were investigated. Biofilm formation was carried out in tryptic soy broth (TSB) and human serum (SE) using Staphylococcus aureus (ATCC 29213) and S. epidermidis RP62A (ATCC 35984). The amount of biofilm was analysed by an established protocol using sonication and microcalorimetry. Physico-chemical characterisation showed marked differences concerning macro- and micropore size, specific surface area and porosity accessible to bacteria between the 5 scaffolds. Biofilm formation was found on all scaffolds and was comparable for α-TCP, chronOS, CDHA and DCP at corresponding time points when the scaffolds were incubated with the same germ and/or growth media, but much lower for cyclOS. This is peculiar because cyclOS had an intermediate porosity, mean pore size, specific surface area, and porosity accessible to bacteria. Our results suggest that biofilm formation is not influenced by a single physico-chemical parameter alone but is a multi-step process influenced by several factors in parallel. Transfer from in vitro data to clinical situations is difficult; thus, advocating the use of cyclOS scaffolds over the four other CaP bone grafts in clinical situations with a high risk of infection cannot be clearly supported based on our data.