917 resultados para PHASE-SPACE APPROACH
Resumo:
The retrieval (estimation) of sea surface temperatures (SSTs) from space-based infrared observations is increasingly performed using retrieval coefficients derived from radiative transfer simulations of top-of-atmosphere brightness temperatures (BTs). Typically, an estimate of SST is formed from a weighted combination of BTs at a few wavelengths, plus an offset. This paper addresses two questions about the radiative transfer modeling approach to deriving these weighting and offset coefficients. How precisely specified do the coefficients need to be in order to obtain the required SST accuracy (e.g., scatter <0.3 K in week-average SST, bias <0.1 K)? And how precisely is it actually possible to specify them using current forward models? The conclusions are that weighting coefficients can be obtained with adequate precision, while the offset coefficient will often require an empirical adjustment of the order of a few tenths of a kelvin against validation data. Thus, a rational approach to defining retrieval coefficients is one of radiative transfer modeling followed by offset adjustment. The need for this approach is illustrated from experience in defining SST retrieval schemes for operational meteorological satellites. A strategy is described for obtaining the required offset adjustment, and the paper highlights some of the subtler aspects involved with reference to the example of SST retrievals from the imager on the geostationary satellite GOES-8.
Resumo:
Forgetting immediate physical reality and having awareness of one�s location in the simulated world is critical to enjoyment and performance in virtual environments be it an interactive 3D game such as Quake or an online virtual 3d community space such as Second Life. Answer to the question "where am I?" at two levels, whether the locus is in the immediate real world as opposed to the virtual world and whether one is aware of the spatial co-ordinates of that locus, hold the key to any virtual 3D experience. While 3D environments, especially virtual environments and their impact on spatial comprehension has been studied in disciplines such as architecture, it is difficult to determine the relative contributions of specific attributes such as screen size or stereoscopy towards spatial comprehension since most of them treat the technology as monolith (box-centered). Using a variable-centered approach put forth by Nass and Mason (1990) which breaks down the technology into its component variables and their corresponding values as its theoretical basis, this paper looks at the contributions of five variables (Stereoscopy, screen size, field of view, level of realism and level of detail) common to most virtual environments on spatial comprehension and presence. The variable centered approach can be daunting as the increase in the number of variables can exponentially increase the number of conditions and resources required. We overcome this drawback posed by adoption of such a theoretical approach by the use of a fractional factorial design for the experiment. This study has completed the first wave of data collection and starting the next phase in January 2007 and expected to complete by February 2007. Theoretical and practical implications of the study are discussed.
Resumo:
The relative contributions of five variables (Stereoscopy, screen size, field of view, level of realism and level of detail) of virtual reality systems on spatial comprehension and presence are evaluated here. Using a variable-centered approach instead of an object-centric view as its theoretical basis, the contributions of these five variables and their two-way interactions are estimated through a 25-1 fractional factorial experiment (screening design) of resolution V with 84 subjects. The experiment design, procedure, measures used, creation of scales and indices, results of statistical analysis, their meaning and agenda for future research are elaborated.
Resumo:
Practical realisation of Cyborgs opens up significant new opportunities in many fields. In particular when it comes to space travel many of the limitations faced by humans, in stand-alone form, are transposed by the adoption of a cyborg persona. In this article a look is taken at different types of Brain-Computer interface which can be employed to realise Cyborgs, biology-technology hybrids. e approach taken is a practical one with applications in mind, although some wider implications are also considered. In particular results from experiments are discussed in terms of their meaning and application possibilities. e article is written from the perspective of scientific experimentation opening up realistic possibilities to be faced in the future rather than giving conclusive comments on the technologies employed. Human implantation and the merger of biology and technology are though important elements.
Resumo:
A novel analytical model for mixed-phase, unblocked and unseeded orographic precipitation with embedded convection is developed and evaluated. The model takes an idealised background flow and terrain geometry, and calculates the area-averaged precipitation rate and other microphysical quantities. The results provide insight into key physical processes, including cloud condensation, vapour deposition, evaporation, sublimation, as well as precipitation formation and sedimentation (fallout). To account for embedded convection in nominally stratiform clouds, diagnostics for purely convective and purely stratiform clouds are calculated independently and combined using weighting functions based on relevant dynamical and microphysical time scales. An in-depth description of the model is presented, as well as a quantitative assessment of its performance against idealised, convection-permitting numerical simulations with a sophisticated microphysics parameterisation. The model is found to accurately reproduce the simulation diagnostics over most of the parameter space considered.
Resumo:
In its default configuration, the Hadley Centre climate model (GA2.0) simulates roughly one-half the observed level of Madden–Julian oscillation activity, with MJO events often lasting fewer than seven days. We use initialised, climate-resolution hindcasts to examine the sensitivity of the GA2.0 MJO to a range of changes in sub-grid parameterisations and model configurations. All 22 changes are tested for two cases during the Years of Tropical Convection. Improved skill comes only from (a) disabling vertical momentum transport by convection and (b) increasing mixing entrainment and detrainment for deep and mid-level convection. These changes are subsequently tested in a further 14 hindcast cases; only (b) consistently improves MJO skill, from 12 to 22 days. In a 20-year integration, (b) produces near-observed levels of MJO activity, but propagation through the Maritime Continent remains weak. With default settings, GA2.0 produces precipitation too readily, even in anomalously dry columns. Implementing (b) decreases the efficiency of convection, permitting instability to build during the suppressed MJO phase and producing a more favourable environment for the active phase. The distribution of daily rain rates is more consistent with satellite data; default entrainment produces 6–12 mm/day too frequently. These results are consistent with recent studies showing that greater sensitivity of convection to moisture improves the representation of the MJO.
Resumo:
A key step in many numerical schemes for time-dependent partial differential equations with moving boundaries is to rescale the problem to a fixed numerical mesh. An alternative approach is to use a moving mesh that can be adapted to focus on specific features of the model. In this paper we present and discuss two different velocity-based moving mesh methods applied to a two-phase model of avascular tumour growth formulated by Breward et al. (2002) J. Math. Biol. 45(2), 125-152. Each method has one moving node which tracks the moving boundary. The first moving mesh method uses a mesh velocity proportional to the boundary velocity. The second moving mesh method uses local conservation of volume fraction of cells (masses). Our results demonstrate that these moving mesh methods produce accurate results, offering higher resolution where desired whilst preserving the balance of fluxes and sources in the governing equations.
Resumo:
This technique paper describes a novel method for quantitatively and routinely identifying auroral breakup following substorm onset using the Time History of Events and Macroscale Interactions During Substorms (THEMIS) all-sky imagers (ASIs). Substorm onset is characterised by a brightening of the aurora that is followed by auroral poleward expansion and auroral breakup. This breakup can be identified by a sharp increase in the auroral intensity i(t) and the time derivative of auroral intensity i'(t). Utilising both i(t) and i'(t) we have developed an algorithm for identifying the time interval and spatial location of auroral breakup during the substorm expansion phase within the field of view of ASI data based solely on quantifiable characteristics of the optical auroral emissions. We compare the time interval determined by the algorithm to independently identified auroral onset times from three previously published studies. In each case the time interval determined by the algorithm is within error of the onset independently identified by the prior studies. We further show the utility of the algorithm by comparing the breakup intervals determined using the automated algorithm to an independent list of substorm onset times. We demonstrate that up to 50% of the breakup intervals characterised by the algorithm are within the uncertainty of the times identified in the independent list. The quantitative description and routine identification of an interval of auroral brightening during the substorm expansion phase provides a foundation for unbiased statistical analysis of the aurora to probe the physics of the auroral substorm as a new scientific tool for aiding the identification of the processes leading to auroral substorm onset.
Resumo:
Radar refractivity retrievals have the potential to accurately capture near-surface humidity fields from the phase change of ground clutter returns. In practice, phase changes are very noisy and the required smoothing will diminish large radial phase change gradients, leading to severe underestimates of large refractivity changes (ΔN). To mitigate this, the mean refractivity change over the field (ΔNfield) must be subtracted prior to smoothing. However, both observations and simulations indicate that highly correlated returns (e.g., when single targets straddle neighboring gates) result in underestimates of ΔNfield when pulse-pair processing is used. This may contribute to reported differences of up to 30 N units between surface observations and retrievals. This effect can be avoided if ΔNfield is estimated using a linear least squares fit to azimuthally averaged phase changes. Nevertheless, subsequent smoothing of the phase changes will still tend to diminish the all-important spatial perturbations in retrieved refractivity relative to ΔNfield; an iterative estimation approach may be required. The uncertainty in the target location within the range gate leads to additional phase noise proportional to ΔN, pulse length, and radar frequency. The use of short pulse lengths is recommended, not only to reduce this noise but to increase both the maximum detectable refractivity change and the number of suitable targets. Retrievals of refractivity fields must allow for large ΔN relative to an earlier reference field. This should be achievable for short pulses at S band, but phase noise due to target motion may prevent this at C band, while at X band even the retrieval of ΔN over shorter periods may at times be impossible.
Resumo:
Seamless phase II/III clinical trials are conducted in two stages with treatment selection at the first stage. In the first stage, patients are randomized to a control or one of k > 1 experimental treatments. At the end of this stage, interim data are analysed, and a decision is made concerning which experimental treatment should continue to the second stage. If the primary endpoint is observable only after some period of follow-up, at the interim analysis data may be available on some early outcome on a larger number of patients than those for whom the primary endpoint is available. These early endpoint data can thus be used for treatment selection. For two previously proposed approaches, the power has been shown to be greater for one or other method depending on the true treatment effects and correlations. We propose a new approach that builds on the previously proposed approaches and uses data available at the interim analysis to estimate these parameters and then, on the basis of these estimates, chooses the treatment selection method with the highest probability of correctly selecting the most effective treatment. This method is shown to perform well compared with the two previously described methods for a wide range of true parameter values. In most cases, the performance of the new method is either similar to or, in some cases, better than either of the two previously proposed methods.
Resumo:
In addition to CO2, the climate impact of aviation is strongly influenced by non-CO2 emissions, such as nitrogen oxides, influencing ozone and methane, and water vapour, which can lead to the formation of persistent contrails in ice-supersaturated regions. Because these non-CO2 emission effects are characterised by a short lifetime, their climate impact largely depends on emission location and time; that is to say, emissions in certain locations (or times) can lead to a greater climate impact (even on the global average) than the same emission in other locations (or times). Avoiding these climate-sensitive regions might thus be beneficial to climate. Here, we describe a modelling chain for investigating this climate impact mitigation option. This modelling chain forms a multi-step modelling approach, starting with the simulation of the fate of emissions released at a certain location and time (time-region grid points). This is performed with the chemistry–climate model EMAC, extended via the two submodels AIRTRAC (V1.0) and CONTRAIL (V1.0), which describe the contribution of emissions to the composition of the atmosphere and to contrail formation, respectively. The impact of emissions from the large number of time-region grid points is efficiently calculated by applying a Lagrangian scheme. EMAC also includes the calculation of radiative impacts, which are, in a second step, the input to climate metric formulas describing the global climate impact of the emission at each time-region grid point. The result of the modelling chain comprises a four-dimensional data set in space and time, which we call climate cost functions and which describes the global climate impact of an emission at each grid point and each point in time. In a third step, these climate cost functions are used in an air traffic simulator (SAAM) coupled to an emission tool (AEM) to optimise aircraft trajectories for the North Atlantic region. Here, we describe the details of this new modelling approach and show some example results. A number of sensitivity analyses are performed to motivate the settings of individual parameters. A stepwise sanity check of the results of the modelling chain is undertaken to demonstrate the plausibility of the climate cost functions.
Resumo:
Facility management (FM), from a service oriented approach, addresses the functions and requirements of different services such as energy management, space planning and security service. Different service requires different information to meet the needs arising from the service. Object-based Building Information Modelling (BIM) is limited to support FM services; though this technology is able to generate 3D models that semantically represent facility’s information dynamically over the lifecycle of a building. This paper presents a semiotics-inspired framework to extend BIM from a service-oriented perspective. The extended BIM, which specifies FM services and required information, will be able to express building service information in the right format for the right purposes. The service oriented approach concerns pragmatic aspect of building’s information beyond semantic level. The pragmatics defines and provides context for utilisation of building’s information. Semiotics theory adopted in this paper is to address pragmatic issues of utilisation of BIM for FM services.
Resumo:
The analysis step of the (ensemble) Kalman filter is optimal when (1) the distribution of the background is Gaussian, (2) state variables and observations are related via a linear operator, and (3) the observational error is of additive nature and has Gaussian distribution. When these conditions are largely violated, a pre-processing step known as Gaussian anamorphosis (GA) can be applied. The objective of this procedure is to obtain state variables and observations that better fulfil the Gaussianity conditions in some sense. In this work we analyse GA from a joint perspective, paying attention to the effects of transformations in the joint state variable/observation space. First, we study transformations for state variables and observations that are independent from each other. Then, we introduce a targeted joint transformation with the objective to obtain joint Gaussianity in the transformed space. We focus primarily in the univariate case, and briefly comment on the multivariate one. A key point of this paper is that, when (1)-(3) are violated, using the analysis step of the EnKF will not recover the exact posterior density in spite of any transformations one may perform. These transformations, however, provide approximations of different quality to the Bayesian solution of the problem. Using an example in which the Bayesian posterior can be analytically computed, we assess the quality of the analysis distributions generated after applying the EnKF analysis step in conjunction with different GA options. The value of the targeted joint transformation is particularly clear for the case when the prior is Gaussian, the marginal density for the observations is close to Gaussian, and the likelihood is a Gaussian mixture.
Resumo:
Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind “noise,” which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical “downscaling” of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme.