952 resultados para PACKET-SWITCHED NETWORK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of modulation schemes for the physical layer network-coded two way wireless relaying scenario is considered. It was observed by Koike-Akino et al. for the two way relaying scenario, that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of multiple access interference which occurs at the relay during the MA Phase and all these network coding maps should satisfy a requirement called exclusive law. We extend this approach to an Accumulate-Compute and Forward protocol which employs two phases: Multiple Access (MA) phase consisting of two channel uses with independent messages in each channel use, and Broadcast (BC) phase having one channel use. Assuming that the two users transmit points from the same 4-PSK constellation, every such network coding map that satisfies the exclusive law can be represented by a Latin Square with side 16, and conversely, this relationship can be used to get the network coding maps satisfying the exclusive law. Two methods of obtaining this network coding map to be used at the relay are discussed. Using the structural properties of the Latin Squares for a given set of parameters, the problem of finding all the required maps is reduced to finding a small set of maps. Having obtained all the Latin Squares, the set of all possible channel realizations is quantized, depending on which one of the Latin Squares obtained optimizes the performance. The quantization thus obtained, is shown to be the same as the one obtained in [7] for the 2-stage bidirectional relaying.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of modulation schemes for the physical layer network-coded three-way wireless relaying scenario is considered. The protocol employs two phases: Multiple Access (MA) phase and Broadcast (BC) phase with each phase utilizing one channel use. For the two-way relaying scenario, it was observed by Koike-Akino et al. [4], that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of multiple access interference which occurs at the relay during the MA phase and all these network coding maps should satisfy a requirement called exclusive law. This paper does the equivalent for the three-way relaying scenario. We show that when the three users transmit points from the same 4-PSK constellation, every such network coding map that satisfies the exclusive law can be represented by a Latin Cube of Second Order. The network code map used by the relay for the BC phase is explicitly obtained and is aimed at reducing the effect of interference at the MA stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of modulation schemes for the physical layer network-coded two way relaying scenario is presented which employs two phases: Multiple access (MA) phase and Broadcast (BC) phase. Depending on the signal set used at the end nodes, the minimum distance of the effective constellation seen at the relay becomes zero for a finite number of channel fade states referred as the singular fade states. The singular fade states fall into the following two classes: (i) the ones which are caused due to channel outage and whose harmful effect cannot be mitigated by adaptive network coding called the non-removable singular fade states and (ii) the ones which occur due to the choice of the signal set and whose harmful effects can be removed called the removable singular fade states. In this paper, we derive an upper bound on the average end-to-end Symbol Error Rate (SER), with and without adaptive network coding at the relay, for a Rician fading scenario. It is shown that without adaptive network coding, at high Signal to Noise Ratio (SNR), the contribution to the end-to-end SER comes from the following error events which fall as SNR-1: the error events associated with the removable and nonremovable singular fade states and the error event during the BC phase. In contrast, for the adaptive network coding scheme, the error events associated with the removable singular fade states fall as SNR-2, thereby providing a coding gain over the case when adaptive network coding is not used. Also, it is shown that for a Rician fading channel, the error during the MA phase dominates over the error during the BC phase. Hence, adaptive network coding, which improves the performance during the MA phase provides more gain in a Rician fading scenario than in a Rayleigh fading scenario. Furthermore, it is shown that for large Rician factors, among those removable singular fade states which have the same magnitude, those which have the least absolute value of the phase - ngle alone contribute dominantly to the end-to-end SER and it is sufficient to remove the effect of only such singular fade states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A square ring microstrip antenna can be modified for dual-band operations by appropriately attaching an open ended stub. The input impedance of this antenna is analyzed here using multi-port network modeling (MNM) approach. The coupled feed is included by defining additional terms in the model. A prototype antenna is fabricated and tested to validate these computations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The algebraic formulation for linear network coding in acyclic networks with each link having an integer delay is well known. Based on this formulation, for a given set of connections over an arbitrary acyclic network with integer delay assumed for the links, the output symbols at the sink nodes at any given time instant is a Fq-linear combination of the input symbols across different generations, where Fq denotes the field over which the network operates. We use finite-field discrete Fourier transform (DFT) to convert the output symbols at the sink nodes at any given time instant into a Fq-linear combination of the input symbols generated during the same generation. We call this as transforming the acyclic network with delay into n-instantaneous networks (n is sufficiently large). We show that under certain conditions, there exists a network code satisfying sink demands in the usual (non-transform) approach if and only if there exists a network code satisfying sink demands in the transform approach. Furthermore, assuming time invariant local encoding kernels, we show that the transform method can be employed to achieve half the rate corresponding to the individual source-destination mincut (which are assumed to be equal to 1) for some classes of three-source three-destination multiple unicast network with delays using alignment strategies when the zero-interference condition is not satisfied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matroidal networks were introduced by Dougherty et al. and have been well studied in the recent past. It was shown that a network has a scalar linear network coding solution if and only if it is matroidal associated with a representable matroid. The current work attempts to establish a connection between matroid theory and network-error correcting codes. In a similar vein to the theory connecting matroids and network coding, we abstract the essential aspects of network-error correcting codes to arrive at the definition of a matroidal error correcting network. An acyclic network (with arbitrary sink demands) is then shown to possess a scalar linear error correcting network code if and only if it is a matroidal error correcting network associated with a representable matroid. Therefore, constructing such network-error correcting codes implies the construction of certain representable matroids that satisfy some special conditions, and vice versa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a scheduler for the downlink of a wireless channel when only partial channel-state information is available at the scheduler. We characterize the network stability region and provide two throughput-optimal scheduling policies. We also derive a deterministic bound on the mean packet delay in the network. Finally, we provide a throughput-optimal policy for the network under QoS constraints when real-time and rate-guaranteed data traffic may be present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we examine the energy consumption of IP Over Optical WDM Networks. As the number of Internet users increases the Internet expands in reach and capacity. This results in increased energy consumption of the network. Minimizing the power consumption, termed as ``Greening the Internet'', is desirable to help service providers (SP) operate their networks and provide services more efficiently in terms of power consumption. Minimizing the operational power typically depends on the strategy (e. g., lightpath bypass, lightpath non-bypass and traffic grooming) and operations (e. g., electronic domain versus optical domain). We consider a typical optical backbone network model, and develop a model which minimizes the power consumption. Performance calculation shows that our method consumes less power compared to traffic grooming approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider multicast flow problems where either all of the nodes or only a subset of the nodes may be in session. Traffic from each node in the session has to be sent to every other node in the session. If the session does not consist of all the nodes, the remaining nodes act as relays. The nodes are connected by undirected edges whose capacities are independent and identically distributed random variables. We study the asymptotics of the capacity region (with network coding) in the limit of a large number of nodes, and show that the normalized sum rate converges to a constant almost surely. We then provide a decentralized push-pull algorithm that asymptotically achieves this normalized sum rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparator based switched capacitor circuits provide an excellent opportunity to design sampled data systems where the virtual ground condition is detected rather than being continuously forced with negative feedback in Opamp based circuits. This work is an application of this concept to design a 1 st order 330 KHz cutoff frequency Lowpass filter operating at 10 MHz sampling frequency in 0.13μm technology and 1.2 V supply voltage. The Comparator Based Switched Capacitor (CBSC) filter is compared with conventional Two stage Miller compensated Operational amplifier based switched capacitor filter. It is shown that CBSC filter relaxes the constraints like speed ,linearity, gain, stability which would otherwise be hard to satisfy in scaled technologies in Opamp based circuits. The designed CBSC based lowpass filter provides significant power savings compared to traditional Opamp based switched capacitor filter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use information theoretic achievable rate formulas for the multi-relay channel to study the problem of optimal placement of relay nodes along the straight line joining a source node and a destination node. The achievable rate formulas that we utilize are for full-duplex radios at the relays and decode-and-forward relaying. For the single relay case, and individual power constraints at the source node and the relay node, we provide explicit formulas for the optimal relay location and the optimal power allocation to the source-relay channel, for the exponential and the power-law path-loss channel models. For the multiple relay case, we consider exponential path-loss and a total power constraint over the source and the relays, and derive an optimization problem, the solution of which provides the optimal relay locations. Numerical results suggest that at low attenuation the relays are mostly clustered close to the source in order to be able to cooperate among themselves, whereas at high attenuation they are uniformly placed and work as repeaters. We also prove that a constant rate independent of the attenuation in the network can be achieved by placing a large enough number of relay nodes uniformly between the source and the destination, under the exponential path-loss model with total power constraint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of modulation schemes for the physical layer network-coded two way relaying scenario is considered with the protocol which employs two phases: Multiple access (MA) Phase and Broadcast (BC) phase. It was observed by Koike-Akino et al. that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of multiple access interference which occurs at the relay during the MA phase. In other words, the set of all possible channel realizations (the complex plane) is quantized into a finite number of regions, with a specific network coding map giving the best performance in a particular region. We obtain such a quantization analytically for the case when M-PSK (for M any power of 2) is the signal set used during the MA phase. We show that the complex plane can be classified into two regions: a region in which any network coding map which satisfies the so called exclusive law gives the same best performance and a region in which the choice of the network coding map affects the performance, which is further quantized based on the choice of the network coding map which optimizes the performance. The quantization thus obtained analytically, leads to the same as the one obtained using computer search for 4-PSK signal set by Koike-Akino et al., for the specific value of M = 4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systems biology is revealing multiple layers of regulatory networks that manifest spatiotemporal variations. Since genes and environment also influence the emergent property of a cell, the biological output requires dynamic understanding of various molecular circuitries. The metabolic networks continually adapt and evolve to cope with the changing milieu of the system, which could also include infection by another organism. Such perturbations of the functional networks can result in disease phenotypes, for instance tuberculosis and cancer. In order to develop effective therapeutics, it is important to determine the disease progression profiles of complex disorders that can reveal dynamic aspects and to develop mutitarget systemic therapies that can help overcome pathway adaptations and redundancy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

6PANview[1] is a Wireless Sensor Network(WSN) monitoring system for 6LoWPAN/RPL networks which we developed as an overlay network for a WSN application. A monitoring system, while performing its operations for maintaining the health of the monitored network, must also be conscious of its impact on the application performance, and must strive to minimize this impact. To this end, we propose a centralized scheduling algorithm within 6PANview which non-intrusively analyzes application traffic arrival patterns at the base station, identifies network idle periods and schedules monitoring activities. The proposed algorithm finds those periodic sequences which are likely to have given rise to the pattern of arrivals seen at the base station. Parts of those sequences are then extended to coarsely predict future traffic and find epochs where low traffic is predicted, in order to schedule monitoring traffic or other activities at these times. We present simulation results for the proposed prediction and scheduling algorithm and its implementation as part of 6PANview. As an enhancement, we briefly talk about using 6PANview's overlay network architecture for distributed scheduling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop an approximate analytical technique for evaluating the performance of multi-hop networks based on beacon-less CSMA/CA as standardised in IEEE 802.15.4, a popular standard for wireless sensor networks. The network comprises sensor nodes, which generate measurement packets, and relay nodes which only forward packets. We consider a detailed stochastic process at each node, and analyse this process taking into account the interaction with neighbouring nodes via certain unknown variables (e.g., channel sensing rates, collision probabilities, etc.). By coupling these analyses of the various nodes, we obtain fixed point equations that can be solved numerically to obtain the unknown variables, thereby yielding approximations of time average performance measures, such as packet discard probabilities and average queueing delays. Different analyses arise for networks with no hidden nodes and networks with hidden nodes. We apply this approach to the performance analysis of tree networks rooted at a data sink. Finally, we provide a validation of our analysis technique against simulations.