975 resultados para P-containing compounds


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single crystal X-ray diffraction studies and solvent dependent H-1 NMR titrations reveal that a set of four tetrapeptides with general formula Boc-Xx(1)-Aib(2)-Yy(3)-Zz(4)-OMe, where Xx, Yy and Zz are coded L- amino acids, adopt equivalent conformations that can be described as overlapping double turn conformations stabilized by two 4 -> 1 intramolecular hydrogen bonds between Yy(3)-NH and Boc C=O and Zz(4)-NH and Xx(1)C=O. In the crystalline state, the double turn structures are packed in head-to-tail fashion through intermolecular hydrogen bonds to create supramolecular helical structures. Field emission scanning electron microscopic (FE-SEM) images of the tetrapeptides in the solid state reveal that they can form flat tape-like structures. The results establish that synthetic Aib containing supramolecular helices can form highly ordered self-aggregated amyloid plaque like human amylin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single crystal X-ray diffraction studies show that the three designed tripeptides Boc-Leu-Aib-m-NA-NO2 (I), Boc-Phe-Aib-m-NA-NO2 (II) and Boc-Pro-Aib-m-ABA-OMe (III) (Aib, -aminoisobutyric acid; m-NA, m-nitroaniline; m-ABA, m-aminobenzoic acid; Boc, t-butyloxycarbonyl) containing aromatic rings in the backbones adopt -turn structures that are self-assembled through intermolecular hydrogen bonds and van der Waals interactions to create layers of -sheets. Solvent-dependent NMR titration and CD studies show that the -turn structures of the peptides also exist in the solution phase. The field emission scanning electron microscopic and transmission electron microscopic images of the peptides in the solid state reveal fibrillar structures of flat morphology that are formed through -sheet mediated self-assembly of the preorganised -turn building blocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results of an experimental study into the oxidative degradation of proxies for atmospheric aerosol are presented. We demonstrate that the laser Raman tweezers method can be used successfully to obtain uptake coeffcients for gaseous oxidants on individual aqueous and organic droplets, whilst the size and composition of the droplets is simultaneously followed. A laser tweezers system was used to trap individual droplets containing an unsaturated organic compound in either an aqueous or organic ( alkane) solvent. The droplet was exposed to gas- phase ozone and the reaction kinetics and products followed using Raman spectroscopy. The reactions of three different organic compounds with ozone were studied: fumarate anions, benzoate anions and alpha pinene. The fumarate and benzoate anions in aqueous solution were used to represent components of humic- like substances, HULIS; a alpha- pinene in an alkane solvent was studied as a proxy for biogenic aerosol. The kinetic analysis shows that for these systems the diffusive transport and mass accommodation of ozone is relatively fast, and that liquid- phase di. ffusion and reaction are the rate determining steps. Uptake coe. ffcients, g, were found to be ( 1.1 +/- 0.7) x 10(-5), ( 1.5 +/- 0.7) x 10 (-5) and ( 3.0 - 7.5) x 10 (-3) for the reactions of ozone with the fumarate, benzoate and a- pinene containing droplets, respectively. Liquid- phase bimolecular rate coe. cients for reactions of dissolved ozone molecules with fumarate, benzoate and a- pinene were also obtained: k(fumarate) = ( 2.7 +/- 2) x 10 (5), k(benzoate) = ( 3.5 +/- 3) x 10 (5) and k(alpha-pinene) = ( 1-3) x 10(7) dm(3) mol (-1) s (- 1). The droplet size was found to remain stable over the course of the oxidation process for the HULIS- proxies and for the oxidation of a- pinene in pentadecane. The study of the alpha- pinene/ ozone system is the first using organic seed particles to show that the hygroscopicity of the particle does not increase dramatically over the course of the oxidation. No products were detected by Raman spectroscopy for the reaction of benzoate ions with ozone. One product peak, consistent with aqueous carbonate anions, was observed when following the oxidation of fumarate ions by ozone. Product peaks observed in the reaction of ozone with alpha- pinene suggest the formation of new species containing carbonyl groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural studies of metal complexes of five ditopic hexaazamacrocycles containing two pyridine rings ([n] py(2)N(4) n = 18, 20, 22, 24 and 26) have been carried out. The synthesis of macrocycles [22]- to [26]- py(2)N(4) are also reported. The protonation constants of the last three compounds and the stability constants of their complexes with Ni2+, Cu2+, Zn2+, and Pb2+ were determined at 25 degreesC in 0.10 mol dm(-3) KNO3 in aqueous solution. Our results with [22] py(2)N(4) show significant differences from those described previously, while [24] py(2)N(4) has not been studied before and [ 26] py2N4 is a new compound. Mononuclear and dinuclear complexes of the divalent metal ions studied with [ 22]- to [26]- py(2)N(4) were found in solution. The stability constants for the ML complexes of the three ligands follow the Irving - Williams order: NiL2+ < CuL2+ >> ZnL2+ > PbL2+, however for the dinuclear complexes the values for Pb2+ complexes are higher than the corresponding values for the Ni2+ and the Zn2+ complexes. The X-ray single crystal structures of the supramolecular aggregates [Cu-2([20] py(2)N(4))(H2O)(4)][Cu(H2O)(6)](SO4)(3) . 3H(2)O ( 1) and [Cu-2([20] py(2)N(4))(CH3CN)(4)][Ni([20] py(2)N(4))](2)(ClO4)(8) . H2O (2), which are composed of homodinuclear [Cu-2([20] py(2)N(4)])(H2O)(4)](4+) ( 1a) and [Cu-2([20] py(2)N(4)])(CH3CN))(4)](4+) (2a), and mononuclear species, [Cu(H2O)(6)](2+) (1b) and [Ni([20] py(2)N(4))](2+) ( 2b), respectively, assembled by an extensive network of hydrogen bonds, are also reported. In both homodinuclear complexes the copper centres are located at the end of the macrocycle and display distorted square pyramidal coordination environments with the basal plane defined by three consecutive nitrogen donors and one solvent molecule, water in 1a and acetonitrile in 2a. The macrocycle adopts a concertina-type conformation leading to the formation of macrocyclic cavities with the two copper centres separated by intramolecular distances of 5.526(1) and 5.508(7) Angstrom in 1a and 2a, respectively. The mononuclear complex [Ni([20] py(2)N(4)])](2+) displays a distorted octahedral co-ordination environment with the macrocycle wrapping the metal centre in a helical shape. EPR spectroscopy of the copper complexes indicated the presence of mono- and dinuclear species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New dioxadiaza- and trioxadiaza-macrocycles containing one rigid dibenzofuran unit (DBF) and N-(2-aminoethyl) pendant arms were synthesized, N,N'-bis(2-aminoethyl)-[17]( DBF) N2O2 (L-1) and N,N'-bis(2-aminoethyl)-[22](DBF)N2O3 (L-2), respectively. The binding properties of both macrocycles to metal ions and structural studies of their metal complexes were carried out. The protonation constants of both compounds and the stability constants of their complexes with Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ were determined at 298.2 K, in aqueous solutions, and at ionic strength 0.10 mol dm(-3) in KNO3. Mononuclear complexes with both ligands were formed, and dinuclear complexes were only found for L-2. The thermodynamic binding affinities of the metal complexes of L-2 are lower than those of L-1 as expected, but the Pb2+ complexes of both macrocycles exhibit close stability constant values. On the other hand, the binding affinities of Cd2+ and Pb2+ for L-1 are very high, when compared to those of Co2+, Ni2+ and Zn2+. These interesting properties were explained by the presence of the rigid DBF moiety in the backbone of the macrocycle and to the special match between the macrocyclic cavity size and the studied larger metal ions. To elucidate the adopted structures of complexes in solution, the nickel(II) and copper( II) complexes with both ligands were further studied by UV-vis-MR spectroscopy in DMSO-H2O 1 : 1 (v/v) solution. The copper(II) complexes were also studied by EPR spectroscopy in the same mixture of solvents. The crystal structure of the copper complex of L-1 was also determined. The copper(II) displays an octahedral geometry, the four nitrogen atoms forming the equatorial plane and two oxygen atoms, one from the DBF unit and the other one from the ether oxygen, in axial positions. One of the ether oxygens of the macrocycle is out of the coordination sphere. Our results led us to suggest that this geometry is also adopted by the Co2+ to Zn2+ complexes, and only the larger Cd2+ and Pb2+ manage to form complexes with the involvement of all the oxygen atoms of the macrocyclic backbone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two cobalt complexes, [Co(L-Se)(phen)]center dot CH2Cl2 (1) and [Co(L-Se)(N,N-Me(2)en)(CH3COO-)] (2) have been synthesized and characterized by elemental analyses, magnetic measurements, i.r. studies etc. Single crystal X- ray studies reveal that in complex (1) cobalt atom is in +2 oxidation state with trigonal bipyramidal geometry, while in complex (2) it is in +3 oxidation state and surrounded octahedrally. The asymmetric unit of complex (2) contains two crystallographically independent discrete molecules. Complex (1) was found to be paramagnetic with mu(eff) = 2.19 BM indicating a low spin cobalt(II) d(7) system, whereas complex (2) is found to be diamagnetic with cobalt(III) in low spin d(6) state. The kinetic studies on the reduction of (2) by ascorbic acid in 80% MeCN-20% H2O (v/v) at 25 degrees C reveal that the reaction proceeds through the rapid formation of inner-sphere adduct, probably by replacing the loosely coordinated AcO- group, followed by electron transfer in a slow step and is supported by a large Q (formation constant) value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The terpenoid chiral selectors dehydroabietic acid, 12,14-dinitrodehydroabietic acid and friedelin have been covalently linked to silica gel yielding three chiral stationary phases CSP 1, CSP 2 and CSP 3, respectively. The enantiodiscriminating capability of each one of these phases was evaluated by HPLC with four families of chiral aromatic compounds composed of alcohols, amines, phenylalanine and tryptophan amino acid derivatives and beta-lactams. The CSP 3 phase, containing a selector with a large friedelane backbone is particularly suitable for resolving free alcohols and their derivatives bearing fluorine substituents, while CSP 2 with a dehydroabietic architecture is the only phase that efficiently discriminates 1, 1'-binaphthol atropisomers. CSP 3 also gives efficient resolution of the free amines. All three phases resolve well the racemates of N-trifluoracetyl and N-3,5-dinitrobenzoyl phenylalanine amino acid ester derivatives. Good enantioseparation of beta-lactams and N-benzoyl tryptophan amino acid derivatives was achieved on CSP 1. In order to understand the structural factors that govern the chiral molecular recognition ability of these phases, molecular dynamics simulations were carried out in the gas phase with binary diastereomeric complexes formed by the selectors of CSP 1 and CSP 2 and several amino acid derivatives. Decomposition of molecular mechanics energies shows that van der Waals interactions dominate the formation of the diastereomeric transient complexes while the electrostatic binding interactions are primarily responsible for the enantioselective binding of the (R)- and (S)-analytes. Analysis of the hydrogen bonds shows that electrostatic interactions are mainly associated with the formation of N-(HO)-O-...=C enantio selective hydrogen bonds between the amide binding sites from the selectors and the carbonyl groups of the analytes. The role of mobile phase polarity, a mixture of n-hexane and propan-2-ol in different ratios, was also evaluated through molecular dynamics simulations in explicit solvent. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four trinuclear Cu(II) complexes, [(CuL1)(3)(mu(3)-OH)](NO3)(2) (1), [(CuL2)(3)(mu(3)-OH)](I)(2)center dot H2O (2), [(CuL3)(3)(mu(3)-OH)](I)(2) (3) and [(CuL1)(3)(mu(3)-OH)][(CuI3)-I-1] (4), where HL1 (8-amino-4-methyl-5-azaoct-3-en-2-one), HL2 [7-amino-4-methyl-5-azaoct-3-en-2-one] and HL3 [7-amino-4-methyl-5-azahept-3-en-2- one] are the three tridentate Schiff bases, have been synthesized and structurally characterized by X-ray crystallography. All four complexes contain a partial cubane core, [(CuL)(3)(mu(3)-OH)](2+) in which the three [CuL] subunits are interconnected through two types of oxygen bridges afforded by the oxygen atoms of the ligands and the central OH- group. The copper(II) ions are in a distorted square-pyramidal environment. The equatorial plane consists of the bridging oxygen of the central OH- group together with three atoms (N, N, O) from the Schiff base. The oxygen atom of the Schiff base also coordinates to the axial position of Cu(II) of another subunit to form the cyclic trimer. Magnetic susceptibilities have been determined for these complexes over the temperature range of 2-300 K. The isotropic Hamiltonian, H = -J(12)S(1)S(2) - J(13)S(1)S(3) - J(23)S(2)S(3) has been used to interpret the magnetic data. The best fit parameters obtained are: J = - 54.98 cm(-1) g = 2.24 for 1; J = - 56.66 cm(-1), g = 2.19 for 2; J = -44.39 cm(-1), g = 2.16 for 3; J = - 89.92 cm(-1), g = 2.25 for 4. The EPR data at low temperature indicate that the phenomenon of spin frustration occurs for complexes 1-3. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental difficulties sometimes force modellers to use predicted rate coefficients for reactions of oxygenated volatile organic compounds (oVOCs). We examine here methods for making the predictions for reactions of atmospheric initiators of oxidation, NO3, OH, O-3 and O(P-3), with unsaturated alcohols and ethers. Logarithmic correlations are found between measured rate coefficients and calculated orbital energies, and these correlations may be used directly to estimate rate coefficients for compounds where measurements have not been performed. To provide a shortcut that obviates the need to calculate orbital energies, structure-activity relations (SARs) are developed. Our SARs are tested for predictive power against compounds for which experimental rate coefficients exist, and their accuracy is discussed. Estimated atmospheric lifetimes for oVOCs are presented. The SARs for alkenols successfully predict key rate coefficients, and thus can be used to enhance the scope of atmospheric models incorporating detailed chemistry. SARs for the ethers have more limited applicability, but can still be useful in improving tropospheric models. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five new thioantimonates have been synthesized in the presence of organic amines under solvothermal conditions and their structures determined by single-crystal X-ray diffraction. All of the compounds are layered and contain antimony-sulphide anions of stoichiometry [Sb4S7](2-), but the structure of the anion formed is dependent on the amine used in synthesis. (H3N(CH2)(4)NH3)[Sb4S7] (1) contains [Sb4S7](2-) double chains directed along [010]. Weak interchain Sb-S interactions between neighbouring chains cause the double chains to pack into layers in the ab plane. In the [001] direction, the layers of double chains alternate with doubly protonated diaminobutane molecules to which the chains are hydrogen bonded. Compounds of general formula (TH)(2)[Sb4S7] (T= CH3(CH2)(2)NH2 (2), (CH3)(2)CHNH2 (3), CH3(CH2)(3)NH2 (4) and CH3(CH2)(4)NH2 (5)) adopt a more complex structure in which [Sb3S8](7-) units are linked by Sb-3(3-) pyramids to form chains, which in turn are bridged by sulphur atoms to create sheets containing large heterorings. Pairs of such sheets form double layers of four atoms thickness that are stacked along [001]. Protonated amine molecules are located between anionic antimony-sulphide layers to which they are hydrogen bonded. Thermal analysis reveals that the decomposition temperature of materials containing [Sb4S7](2-) anions is dependent both on the structure of the anion, the lowest decomposition temperature being that of the low-dimensional phase (1) and on the identity of the amine, the decomposition temperature decreasing with an increasing number of carbon atoms and decreasing density. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (1), [(CuL2)(3)(mu(3)-OH)](CIO4)(2) (2), [(CuL3)(3)-(mu(3)-OH)](ClO4)(4)center dot H2O (3), and [(CuL4)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (4), where HL1 = 8-amino-4,7,7-trimethyl-5-azaoct-3-en-2-one, HL2 = 7-amino-4-methyl-5-azaoct-3-en-2-one, HL3 = 7(ethylamino)-4-methyl-5-azahept-3-en-2-one, and HL4 = 4-methyl-7-(methylamino)-5-azahept-3-en-2-one, have been derived from the four tridentate Schiff bases (HL1, HL2, HL3, and HL4) and structurally characterized by X-ray crystallography. For all compounds, the cationic part is trinuclear with a CU3OH core held by three carbonyl oxygen bridges between each pair of copper(II) atoms. The copper atoms are five-coordinate with a distorted square-pyramidal geometry; the equatorial plane consists of the bridging oxygen atom of the central OH group together with three atoms (N, N, O) from one ligand whereas an oxygen atom of a second ligand occupies the axial position. Magnetic measurements have been performed in the 2-300 K temperature range. The experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -J(S1S2+S2S3+S1S3) yielding as best-fit parameters: J = -66.7 and g = 2.19 for 1, J = -36.6 and g = 2.20 for 2, J = -24.5 and g = 2.20 for 3, and J = -14.9 and g = 2.05 for 4. EPR spectra at low temperature show the existence of spin frustration in complexes 3 and 4, but it has not been possible to carry out calculations of the antisymmetric exchange parameter, G, from magnetic data. In frozen methanolic solution, at 4 K, hyperfine splitting in all complexes and spin frustration in complex 4 seem to be confirmed. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction of the redox-active ligand, Hpyramol (4-methyl-2-N-(2-pyridylmethyl)aminophenol) with K2PtCl4 yields monofunctional square-planar [Pt(pyrimol)Cl], PtL-Cl, which was structurally characterised by single-crystal X-ray diffraction and NMR spectroscopy. This compound unexpectedly cleaves supercoiled double-stranded DNA stoichiometrically and oxidatively, in a non-specific manner without any external reductant added, under physiological conditions. Spectro-electrochemical investigations of PtL-Cl were carried out in comparison with the analogue CuL-Cl as a reference compound. The results support a phenolate oxidation, generating a phenoxyl radical responsible for the ligand-based DNA cleavage property of the title compounds. Time-dependent in vitro cytotoxicity assays were performed with both PtL-Cl and CuL-Cl in various cancer cell lines. The compound CuL-Cl overcomes cisplatin-resistance in ovarian carcinoma and mouse leukaemia cell lines, with additional activity in some other cells. The platinum analogue, PtL-Cl also inhibits cell-proliferation selectively. Additionally, cellular-uptake studies performed for both compounds in ovarian carcinoma cell lines showed that significant amounts of Pt and Cu were accumulated in the A2780 and A2780R cancer cells. The conformational and structural changes induced by PtL-Cl and CuL-Cl on calf thymus DNA and phi X174 supercoiled phage DNA at ambient conditions were followed by electrophoretic mobility assay and circular dichroism spectroscopy. The compounds induce extensive DNA degradation and unwinding, along with formation of a monoadduct at the DNA minor groove. Thus, hybrid effects of metal-centre variation, multiple DNA-binding modes and ligand-based redox activity towards cancer cell-growth inhibition have been demonstrated. Finally, reactions of PtL-Cl with DNA model bases (9-Ethylguanine and 5'-GMP) followed by NMR and MS showed slow binding at Guanine-N7 and for the double stranded self complimentary oligonucleotide d(GTCGAC)(2) in the minor groove.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption of L-CySteine and L-methionine amino acids on a chiral Cu{5 3 1} surface was investigated with high resolution X-ray photoelectron spectroscopy (XPS) and carbon K-edge near edge X-ray absorption fine structure (NEXAFS) Spectroscopy using synchrotron radiation. XPS shows that at 300 K L-cysteine adsorbs through two oxygen, a nitrogen and a sulfur atom, in a four point 'quadrangular footprint', whereas L-methionine adsorbs through only two oxygen and a nitrogen atom in a 'triangular footprint'. NEWS was used to clarify the adsorption geometry of both molecules, which suggests a binding orientation to the top layer and second layer atoms in two different orientations associated with adsorption sites on {1 1 0} and {3 1 1} microfacets; of the Cu{5 3 1} surface. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the 1:2 condensate (L) of diethylenetriamine and benzaldehyde as the main ligand, binuclear copper(l) complexes [Cu2L2(4,4'-bipyridine)](CIO4)(2).0.5H(2)O (1a) and [Cu2L2(1,2-bis(4-pyridyl)ethane)](CIO4)(2) (1b) are synthesised. The two metal ions in la are bridged by 4,4'-bipyridine and those in 1b by 1,2-bis(4-pyridyl)ethane, From the X-ray crystal structure of la, each metal ion is found to be bound to three N atoms of L and one of the two N atoms of the bridging ligand in a distorted tetrahedral fashion. The Cu(I)-N bond lengths in la lie in the range of 1.998(5)-2.229(6) Angstrom. Electrochemical studies in dichloromethane (DCM) show that the (Cu2N8)-N-I moieties in la and 1b are composed of two essentially non-interacting (CuN4)-N-I cores with Cu-II/I potential of 0.44 V vs. SCE. While la displays metal induced quenching of the inherent emission of 4,4'-bipyridine in DCM solution, 1b exhibits two weak emission bands in DCM solution at 425 and 477 nm (total quantum yield = 3.59 x 10(-5)) originating from MLCT excited states. With the help of Extended Huckel calculations it is established that the higher energy emission in 1b is from Cu(I) --> bridging-ligand charge transfer excited state and the lower energy one in 1b from Cu(I) --> L charge transfer excited state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new chromium-antimony-sulfide, [Cr(C6H18N4)(SbS3)], has been synthesised under solvothermal conditions from CrCl3. 6H(2)O, Sb2S3 and S in the presence of triethylenetetramine at 433 K and characterised by single-crystal X-ray diffraction, thermogravimetry, elemental analysis and SQUID magnetometry. The structure of [Cr(C6H18N4)(SbS3)] consists of neutral mononuclear chromium-centred complexes, in which the Cr3+ is chelated by one tetradentate triethylenetetramine molecule and a bidentate SbS33- ligand, yielding distorted octahedral coordination. Intermolecular hydrogen bonds link individual molecules into layers within the ac plane. Within a layer, molecules occur in pairs with each member related by a centre of inversion. The Cr...Cr separation within a pair is approximately 6.5 Angstrom. Magnetic susceptibility data reveal Curie-Weiss behaviour with mu(eff) = 3.819(3)/mu(B) and a negligible Weiss constant, indicative of non-interacting Cr3+ ions. (C) 2003 Elsevier Science Ltd. All rights reserved.