991 resultados para Oyster Bay


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The upper Bay of Fundy is a critical stopover site for Semipalmated Sandpipers (Calidris pusilla) during their fall migration. However, little is known about factors that influence selection of feeding and roosting sites by these birds, or the extent to which birds move between different sites during their time in the region. Using radio-telemetry, we studied movement patterns, examined habitat use, and tested hypotheses associated with factors influencing foraging and roost-site selection. Movements of radio-tagged sandpipers were tracked in the upper Bay of Fundy in August 2004 and 2005. In 2004, sandpipers from the Minas Basin, Nova Scotia and Chignecto Bay, New Brunswick and Nova Scotia, were tracked, and in 2005, sandpipers were tracked only in Chignecto Bay. Sandpipers were highly mobile in both the Minas Basin 2004 and Chignecto Bay 2005, making daily movements of up to 20 km between foraging and roosting sites, although very little movement was detected in Chignecto Bay in 2004. Migrating sandpipers appeared to select foraging sites based on relative safety, as measured by distance to cover, provided that these sites offered an adequate food supply. Similarly, roosting sandpipers preferred sites that were far from nearby trees that might offer cover to predators. This preference for safe sites became more apparent later in their stay in the Bay of Fundy, when birds were heavier and, therefore, possibly more vulnerable to predation. Semipalmated Sandpipers appear to be flexible during their time in the upper Bay of Fundy, displaying year-to-year and site-to-site variability in movement and mudflat usage. Therefore, multiple, synchronized population counts should be conducted at known roost sites in order to more accurately estimate Semipalmated Sandpiper abundance in this region. Furthermore, in a highly dynamic system where food can be variable, landscape features such as distance to cover may be important factors to consider when selecting candidate sites for shorebird conservation measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Across North America, Bald Eagle (Haliaeetus leucocephalus) populations appear to be recovering following bans of DDT. A limited number of studies from across North America have recorded a surplus of nonbreeding adult Bald Eagles in dense populations when optimal habitat and food become limited. Placentia Bay, Newfoundland is one of these. The area has one of the highest densities of Bald Eagles in eastern North America, and has recently experienced an increase in the proportion of nonbreeding adults within the population. We tested whether the observed Bald Eagle population trends in Placentia Bay, Newfoundland during the breeding seasons 1990-2009 are due to habitat saturation. We found no significant differences in habitat or food resource characteristics between occupied territories and pseudo-absence data or between nest sites with high vs. low nest activity/occupancy rates. Therefore there is no evidence for habitat saturation for Bald Eagles in Placentia Bay and alternative hypotheses for the high proportion of nonbreeding adults should be considered. The Newfoundland population provides an interesting case for examination because it did not historically appear to be affected by pollution. An understanding of Bald Eagle population dynamics in a relatively pristine area with a high density can be informative for restoration and conservation of Bald Eagle populations elsewhere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the use of data assimilation in coastal area morphodynamic modelling using Morecambe Bay as a study site. A simple model of the bay has been enhanced with a data assimilation scheme to better predict large-scale changes in bathymetry observed in the bay over a 3-year period. The 2DH decoupled morphodynamic model developed for the work is described, as is the optimal interpolation scheme used to assimilate waterline observations into the model run. Each waterline was acquired from a SAR satellite image and is essentially a contour of the bathymetry at some level within the inter-tidal zone of the bay. For model parameters calibrated against validation observations, model performance is good, even without data assimilation. However the use of data assimilation successfully compensates for a particular failing of the model, and helps to keep the model bathymetry on track. It also improves the ability of the model to predict future bathymetry. Although the benefits of data assimilation are demonstrated using waterline observations, any observations of morphology could potentially be used. These results suggest that data assimilation should be considered for use in future coastal area morphodynamic models.