986 resultados para Oxygen supply
Resumo:
Establishing connectivity of products with real-time information about themselves can at one level provide accurate data, and at another, allow products to assess and influence their own destiny. In this way, the specification for an intelligent product is being built - one whose information content is permanently bound to its material content. This paper explores the impact of such development on supply chains, contrasting between simple and complex product supply chains. The Auto-ID project is on track to enable such connectivity between products and information using a single, open-standard, data repository for storage and retrieval of product information. The potential impact on the design and management of supply chains is immense. This paper provides an introduction to of some of these changes, demonstrating that by enabling intelligent products, Auto ID systems will be instrumental in driving future supply chains. The paper also identifies specific application areas for this technology in the product supply chain.
Resumo:
The attrition of two potential oxygen-carriers for chemical-looping, 100. wt% mechanically-mixed, unsupported iron oxide (400-600 μm diameter) and 25. wt% copper oxide impregnated on alumina (600-900 μm diameter), has been studied. The rates of attrition of batches of these particles whilst they were being fluidised and subjected to successive cycles of reduction and oxidation were determined by measuring the rate of production of fine particles elutriated from the bed, as well as progressive changes in the distribution of particle sizes retained in the bed. The ability of the particles to withstand impacts was also investigated by examining the degree of fragmentation of 1. g of reacted particles of known size on projecting them at a target at various velocities. It was found that the mechanical strength of the iron oxide particles deteriorated significantly after repeated cycles of oxidation and reduction. Thus, the rate of elutriation increased ~35-fold between the 1st and 10th cycle. At an impact velocity of 38. m/s, the amount of fragmentation in the impact test, viz. mass fraction of particles after impact having a size less than that before impact, increased from ~2.3. wt% (fresh particles) to 98. wt% after the 10th cycle. The CuO particles, in comparison, were able to withstand repeated reaction: no signs of increased rates of elutriation or fragmentation were observed over ten cycles. These results highlight the importance of selecting a durable support for oxygen-carriers. © 2011 Elsevier Ltd.
Resumo:
Chapter 15 Design Advisor: How to Supply Designers with Knowledge about Inclusion? E. Zitkus, PM Langdon and PJ Clarkson 15.1 Introduction In an ideal scenario accessibility issues such as legibility, usability and associated cognitive ...
Resumo:
The universal exhaust gas oxygen (UEGO) sensor is a well-established device which was developed for the measurement of relative air fuel ratio in internal combustion engines. There is, however, little information available which allows for the prediction of the UEGO's behaviour when exposed to arbitrary gas mixtures, pressures and temperatures. Here we present a steady-state model for the sensor, based on a solution of the Stefan-Maxwell equation, and which includes a momentum balance. The response of the sensor is dominated by a diffusion barrier, which controls the rate of diffusion of gas species between the exhaust and a cavity. Determination of the diffusion barrier characteristics, especially the mean pore size, porosity and tortuosity, is essential for the purposes of modelling, and a measurement technique based on identification of the sensor pressure giving zero temperature sensitivity is shown to be a convenient method of achieving this. The model, suitably calibrated, is shown to make good predictions of sensor behaviour for large variations of pressure, temperature and gas composition. © 2012 IOP Publishing Ltd.
Resumo:
Ten years ago the intelligent product model was introduced as a means of motivating a supply chain in which product or orders were central as opposed to the organizations that stored or delivered them. This notion of a physical product influencing its own movement through the supply chain was enabled by the evolution of low cost RFID systems which promised low cost connection between physical goods and networked information environments. In 2002 the notion of product intelligence was regarded as a useful but rather esoteric construct. However, in the intervening ten years there have been a number of technological advances coupled with an increasingly challenged business environment which make the prospects for intelligent product deployment seem more likely. This paper reviews a number of these developments and assesses their impact on the intelligent product approach. © 2012 IFAC.
Resumo:
The oxygen vacancy has been inferred to be the critical defect in HfO 2, responsible for charge trapping, gate threshold voltage instability, and Fermi level pinning for high work function gates, but it has never been conclusively identified. Here, the electron spin resonance g tensor parameters of the oxygen vacancy are calculated, using methods that do not over-estimate the delocalization of the defect wave function, to be g xx = 1.918, g yy = 1.926, g zz = 1.944, and are consistent with an observed spectrum. The defect undergoes a symmetry lowering polaron distortion to be localized mainly on a single adjacent Hf ion. © 2012 American Institute of Physics.
Resumo:
Chemical looping combustion (CLC) is a novel combustion technology that involves cyclic reduction and oxidation of oxygen storage materials to provide oxygen for the combustion of fuels to CO2 and H2O, whilst giving a pure stream of CO2 suitable for sequestration or utilisation. Here, we report a method for preparing of oxygen storage materials from layered double hydroxides (LDHs) precursors and demonstrate their applications in the CLC process. The LDHs precursor enables homogeneous mixing of elements at the molecular level, giving a high degree of dispersion and high-loading of active metal oxide in the support after calcination. Using a Cu-Al LDH precursor as a prototype, we demonstrate that rational design of oxygen storage materials by material chemistry significantly improved the reactivity and stability in the high temperature redox cycles. We discovered that the presence of sodium-containing species were effective in inhibiting the formation of copper aluminates (CuAl2O4 or CuAlO 2) and stabilising the copper phase in an amorphous support over multiple redox cycles. A representative nanostructured Cu-based oxygen storage material derived from the LDH precursor showed stable gaseous O2 release capacity (∼5 wt%), stable oxygen storage capacity (∼12 wt%), and stable reaction rates during reversible phase changes between CuO-Cu 2O-Cu at high temperatures (800-1000 °C). We anticipate that the strategy can be extended to manufacture a variety of metal oxide composites for applications in novel high temperature looping cycles for clean energy production and CO2 capture. © The Royal Society of Chemistry 2013.
Resumo:
Chemical looping combustion (CLC) uses a metal oxide (the oxygen carrier) to provide oxygen for the combustion of a fuel and gives an inherent separation of pure CO2 with minimal energy penalty. In solid-fuel CLC, volatile matter will interact with oxygen carriers. Here, the interaction between iron-based oxygen carriers and a volatile hydrocarbon (n-heptane) was investigated in both a laboratory-scale fluidised bed and a thermogravimetric analyser (TGA). Experiments were undertaken to characterise the thermal decomposition of the n-heptane occurring in the presence and in the absence of the oxygen carrier. In a bed of inert particles, carbon deposition increased with temperature and acetylene appeared as a possible precursor. For a bed of carrier consisting of pure Fe2O3, carbon deposition occurred once the Fe2O3 was fully reduced to Fe. When the Fe2O3 was doped with 10 mol % Al2O3 (Fe90Al), deposition started when the carrier was reduced to a mixture of Fe and FeAl2O4, the latter being very unreactive. Furthermore, when pure Fe2O3 was fully reduced to Fe, agglomeration of the fluidised bed occurred. However, Fe90Al did not give agglomeration even after extended reduction. The results suggest that Fe90Al is promising for the CLC of solid fuels. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.