985 resultados para Oxyde d’indium dopé à l’étain (ITO)
Resumo:
Objective. The objective of this study was to evaluate the effects of endodontic irrigants on endotoxins in root canals.Study design. Ninety-eight single-root human teeth were used. Escherichia coli endotoxin was inoculated into 84 root canals. All root canals were enlarged and assigned to 7 groups (n = 14), according to solution used. Group 1 (G1): 2.5% NaOCl; G2: 5.25% NaOCl; G3: 2% chlorhexidine; G4: 0.14% calcium hydroxide; G5: polymyxin B; G6: positive control, saline solution; G7: negative control (no endotoxin). Two samplings of root canal were accomplished: immediate and after 7 days. Detoxification of endotoxin was evaluated by Limulus assay and antibody production in B-lymphocyte culture. Results were analyzed by Kruskal-Wallis/Dunn and ANOVA/Tukey.Results. At the immediate and second samplings, groups G4, G5, and G7 presented the best results, significantly different from groups G1, G2, G3, and G6 (P = .05).Conclusions. Calcium hydroxide and polymyxin B detoxified endotoxin in root canals and altered properties of LPS to stimulate the antibody production by B-lymphocytes. Sodium hypochlorite and chlorhexidine did not detoxify endotoxin.
Resumo:
A flow injection system with online sample preparation is proposed for the determination of phosphite in liquid fertilizers by spectrophotometry. After loop-based injection, phosphite is oxidized by an acidic permanganate solution (1.0 10(-2) mol L-1 KMnO4 + 1.0 mol L-1 H2SO4) in a heated reactor (50 degreesC). The phosphate generated is then determined by the molybdenum blue method. Influence of flow rates, temperature, and concentration and order of addition of reagents, sample volume, and reactor configuration for the blue complex formation on recorded signals were investigated. The pow system was applied to phosphite determination in commercial samples of liquid fertilizers. The proposed system handles about 80 samples per hour [0.05-0.40% (w/v) H3PO3; R = 0,9998], consuming about 80 muL sample, 1 mg KMnO4, 25 mg (NH)(6)Mo7O24, and Ia mg ascorbic acid per determination. Results are precise [relative standard deviation less than or equal to 3.5% for 0.1% (w/v) H3PO3, n = 12] and in agreement with those obtained by gravimetry at 95% confidence level. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The aim of this study was to evaluate the effects of the laser radiation (685 nm) associated with photosensitizers on viability of different species of Candida genus. Suspensions of Candida albicans, Candida dubliniensis, Candida krusei and Candida tropicalis, containing 106 viable cells per milliliter were obtained with the aid of a Neubauer's chamber. From each species, 10 samples of the cell suspension were irradiated with diode laser (685 nm) with 28 J/cm(2) in the presence of methylene blue (0.1 mg/ml), 10 samples were only treated with methylene blue, 10 samples were irradiated with laser in the absence of the dye, 10 samples were treated with the dye and irradiated with laser light and 10 samples were exposed to neither the laser light nor to the methylene blue dye. From each sample, serial dilutions of 10(-2) and 10(-3) were obtained and aliquots of 0.1 ml of each dilution were plated in duplicate on Sabouraud dextrose agar. After incubation at 37 degrees C for 48 h, the number of colony-forming units (CFU/ml) was obtained and data were submitted to ANOVA and Tukey's test (p < 0.05). Laser radiation in the presence of methylene blue reduced the number of CFU/ml in 88.6% for C. albicans, 84.8% for C. dubliniensis, 91.6% for C krusei and 82.3% for C tropicalis. Despite of this, only laser radiation or methylene blue did not reduce significantly the number of CFU/ml of Candida samples, except for C tropicalis. It could be concluded that the photo activation of methylene blue by the red laser radiation at 685 nm presented fungicide effect on all Candida species studied. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The laser ablation method was used for depositing porous nanocrystalline indium-tin oxide thin films for gas sensing applications. Samples were prepared at different pressures using three gases (O-2, 0.8N(2):0.2O(2), N-2) and heat-treated in the same atmosphere used for the ablation process. X-ray diffraction results show that the films are not oriented and the grain sizes are in the range between 15 and 40 nm. The grains are round shaped for all samples and the porosity of the films increases with the deposition pressure. The degree of sintering after heat treatment increases for lower oxygen concentrations, generating fractures on the surface of the samples. Film thicknesses are in the range of I pm for all gases as determined from scanning electron microscopy cross-sections. Electrical resistance varies between 36.3 ohm for the film made at 10 Pa pressure in N-2 until 9.35 x 10(7) ohm for the film made at 100 Pa in O-2. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Rare earth (RE) ions have spectroscopic characteristics to emit light in narrow lines, which makes RE complexes with organic ligands candidates for full color OLED (Organic Light Emitting Diode) applications. In particular, beta-diketone rare earth (RE(3+)) complexes show high fluorescence emission efficiency due to the high absorption coefficient of the beta-diketone and energy transfer to the central ion. In this work, the fabrication and the electroluminescent properties of devices containing a double and triple-layer OLED using a new beta-diketone complex, [Eu(bmdm)(3)(tppo)(2)], as transporting and emitting layers are compared and discussed. The double and triple-layer devices based on this complex present the following configurations respectively: device 1: ITO/TPD (40 nm)/[Eu(bmdm)(3)(tppo)(2)] (40 nm)/Al (150 nm); device 2: ITO/TPD (40 nm)/[Eu(bmdm)(3) (tppo)(2)] (40 nm)/Alq(3) (20 nm)/Al (150 nm) and device 3: ITO/TPD (40 nm)/bmdm-ligand (40 nm)/Al (150 nm), were TPD is (N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1-biphenil-4,4-diamine) and bmdm is butyl methoxy-dibenzoyl-methane. All the films were deposited by thermal evaporation carried out in a high vacuum system. These devices exhibit high intensity photo- (PL) and electro-luminescent (EL) emission. Electroluminescence spectra show emission from Eu(3+) ions attributed to the (5)D(0) to (7)F(J) (J = 0, 1, 2, 3 and 4) transitions with the hypersensitive (5)D(o) -> (7)F(2) transition (around 612 nm) as the most prominent one. Moreover, a transition from (5)D(1) to (7)F(1) is also observed around 538 nm. The OLED light emission was almost linear with the current density. The EL CIE chromaticity coordinates (X = 0.66 and Y = 0.33) show the dominant wavelength, lambda(d) = 609 nm, and the color gamut achieved by this device is 0.99 in the CIE color space. (c) 2006 Elsevier B.V. All rights reserved.