1000 resultados para Ordinal behavior


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A superhydrophobic surface has many advantages in micro/nanomechanical applications, such as low adhesion, low friction and high restitution coefficient, etc. In this paper, we introduce a novel and simple route to fabricate superhydrophobic surfaces using ZnO nanocrystals. First, tetrapod-like ZnO nanocrystals were prepared via a one-step, direct chemical vapor deposition (CVD) approach. The nanostructured ZnO material was characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD) and the surface functionalized by aminopropyltriethoxysilane (APS) was found to be hydrophobic. Then the superhydrophobic surface was constructed by depositing uniformly ZnO hydrophobic nanoparticles (HNPs) on the Poly(dimethylsiloxane) (PDMS) film substrate. Water wettability study revealed a contact angle of 155.4 +/- 2 degrees for the superhydrophobic surface while about 110 degrees for pure smooth PDMS films. The hysteresis was quite low, only 3.1 +/- 0.3 degrees. Microscopic observations showed that the surface was covered by micro- and nano-scale ZnO particles. Compared to other approaches, this method is rather convenient and can be used to obtain a large area superhydrophobic surface. The high contact angle and low hysteresis could be attributed to the micro/nano structures of ZnO material; besides, the superhydrophobic property of the as-constructed ZnO-PDMS surface could be maintained for at least 6 months. (C) Koninklijke Brill NV, Leiden, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A peeling model is proposed to analyze the peeling properties of bio-mimetic nano-films using the finite element method (FEM) and theoretical approach. The influences of the nano-film's adhesion length, thickness, elastic modulus, roughness and peeling angle on the peeling force were considered as well as the effect of the viscoelastic behavior. It has been found that the effective adhesion length, at which the peeling force attained maximum, was much smaller than the real length of nano-films; and the shear force dominated in the case of smaller peeling angles, whereas, the normal force dominated at larger peeling angles. The total peeling force decreased with an increasing peeling angle. Two limiting values of the peeling-off force can be found in the viscoelastic model, which corresponds to the smaller and larger loading rate cases. The effects of nano-film thickness and Young's modulus on peeling behaviors were also discussed. The results obtained are helpful for understanding the micro-adhesion mechanisms of biological systems, such as geckos. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An indentation simulation of the crystal Ni is carried out by a molecular dynamics technique (MD) to study the mechanical behavior at nanometer scales. Indenter tips with both sphere shape and conical shape with 60 cone angle are used, and simulation samples with different crystal orientations are adopted. Some defects such as dislocations and point defects are observed. It is found that nucleated defects (dislocations, amorphous atoms) are from the local region near the pin tip or the sample surface. The temperature distribution of the local region is analyzed and it can explain our MD simulation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The indention simulation of the crystal Ni is carried out by molecular dynamics technique (MD) to study the mechanical behavior at nanometer scales, the indenter tips with sphere shape is used. Some defects such as dislocations, point defects are observed. It is found that defects (dislocations, amorphous) nucleated is from local region near the pin tip or the sample surface. The temperature distribution of local region is analyzed and it can explain our MD simulation result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we review our recent advances in understanding the deformation behavior of a typical tough Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit 1) bulk metallic glass (BMG), as a model material, under various loading modes and strain rates, focusing particularly on the rate-dependence and formation mechanism of shear-banding. Dynamic and quasi-static mechanical experiments, including plate shear, shear punch and spherical indentation, and continuum as well as atomistic modeling on shear-banding are discussed. The results demonstrate that higher strain rate slows down the annihilation process of free volume, but promotes the free-volume coalescence, which is responsible for the rate-dependent shear banding. The physical origin of shear bands, that is the free volume softening underpinned by irreversible rearrangements of atoms, is unveiled. Finally, some concluding remarks are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic planar compressive experiments on a typical tough Zr-BMG (Bulk Metallic Glass) were carried out under impact velocity of 500-600 m/sec and strain rate of 10(6)/s. The fracture surface of samples exhibits different fracture patterns at different parts of the sample. At a corner close to the front loading boundary, fracture patterns from the free edge toward the centre changed from equiaxial veins in microscale to periodic corrugations in nanoscale; in the middle of the sample, the fracture surface contains glazed zones laid out orderly along the same boundary. FEM simulation was performed to investigate the stress distributions in the impacted sample under a short duration impact loading. It has revealed that the fracture patterns changing from the free edge toward the centre were resulted from the fracture modes' changing from the tensile dominant fracture to the shear dominant fracture. Whereas at the middle part of the sample, fracture initiated from several parallel shear bands propagating close to the same boundary is due to a large strain or much higher shear stress in this area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural relaxation by isothermal annealing below the glass transition temperature is conducted on a Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass. The effect of structural relaxation on thermal and mechanical properties was investigated by differential scanning calorimetry and instrumented nanoindentation. The recovery of the enthalpy in the DSC curves indicates that thermally unstable defects were annihilated through structural relaxation. During nanoindentation, the structural relaxation did not have a significant influence on the serrated plastic flow behavior. However, Structural relaxation shows an obvious effect in increasing both the hardness and elastic modulus, which is attributed to the annihilation of thermally unstable defects that resulted from the relaxation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural relaxation by isothermal annealing below the glass transition temperature is conducted on a Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass. The effect of structural relaxation on thermal and mechanical properties was investigated by differential scanning calorimetry and instrumented nanoindentation. The recovery of the enthalpy in the DSC curves indicates that thermally unstable defects were annihilated through structural relaxation. During nanoindentation, the structural relaxation did not have a significant influence on the serrated plastic flow behavior. However, Structural relaxation shows an obvious effect in increasing both the hardness and elastic modulus, which is attributed to the annihilation of thermally unstable defects that resulted from the relaxation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the influence of contact geometry, including the round tip of the indenter and the roughness of the specimen, on hardness behavior for elastic plastic materials is studied by means of finite element simulation. We idealize the actual indenter by an equivalent rigid conic indenter fitted smoothly with a spherical tip and examine the interaction of this indenter with both a flat surface and a rough surface. In the latter case the rough surface is represented by either a single spherical asperity or a dent (cavity). Indented solids include elastic perfectly plastic materials and strain hardening elastic-plastic materials, and the effects of the yield stress and strain hardening index are explored. Our results show that due to the finite curvature of the indenter tip the hardness versus indentation depth curve rises or drops (depending on the material properties of the indented solids) as the indentation depth decreases, in qualitative agreement with experimental results. Surface asperities and dents of curvature comparable to that of the indenter tip can appreciably modify the hardness value at small indentation depth. Their effects would appear as random variation in hardness.