929 resultados para Oracle bones.
Resumo:
Knowledge of anatomical variations of the musculoskeletal system is important for interpreting unusual clinical presentations. We observed the presence of an abnormal extensor indicis muscle in the left hand of an adult male cadaver. In this case, the muscle comes from the ligament and over the scaphoideum and trapezoideum bones and continues after the short muscle belly; it is attached to the dorsal aponeurosis of the indicis. This muscular disposition was described in other studies which demonstrated approximately 1.0% of incidence. Clinically, this anatomical variation may be associated with pain and swelling at the back of the hand. In these cases symptoms tend to increase due to mechanical stress and can be confused with the presence of a dorsal synovial cyst. This report will help clinicians, surgeons, occupational and physical therapists formulate better clinical or surgical decisions when presented with a rare anatomical variation.
Resumo:
Multicentric carpotarsal osteolysis (MCTO) is a rare skeletal dysplasia characterized by aggressive osteolysis, particularly affecting the carpal and tarsal bones, and is frequently associated with progressive renal failure. Using exome capture and next-generation sequencing in five unrelated simplex cases of MCTO, we identified previously unreported missense mutations clustering within a 51 base pair region of the single exon of MAFB, validated by Sanger sequencing. A further six unrelated simplex cases with MCTO were also heterozygous for previously unreported mutations within this same region, as were affected members of two families with autosomal-dominant MCTO. MAFB encodes a transcription factor that negatively regulates RANKL-induced osteoclastogenesis and is essential for normal renal development. Identification of this gene paves the way for development of novel therapeutic approaches for this crippling disease and provides insight into normal bone and kidney development.
Resumo:
Objective: The objective of this research was to study the influence of the use of helmet in facial trauma victims of motorcycle accidents with moderate traumatic brain injury. Methods: We retrospectively reviewed the incidence of facial injuries in helmeted and nonhelmeted victims with moderate traumatic brain injury at a referral trauma hospital. Results: The sample consisted of 272 patients predominantly men (94.5%) and between 21 and 40 years old (62.9%). The majority of patients were using helmet (80.1%). The occurrence of facial fractures was most frequent for zygomatic bone (51.8%), followed by mandible (18.8%) and nasal bones (9.2%). Conclusions: Individuals in the most productive age group are most affected, which causes a great loss to financial and labor systems. It is important to take measures to alert the public regarding the severity of injuries likely to occur in motorcycle-related accidents and ways to prevent them.
Resumo:
This finite element analysis (FEA) compared stress distribution on different bony ridges rehabilitated with different lengths of morse taper implants, varying dimensions of metal-ceramic crowns to maintain the occlusal alignment. Three-dimensional FE models were designed representing a posterior left side segment of the mandible: group control, 3 implants of 11 mm length; group 1, implants of 13 mm, 11 mm and 5 mm length; group 2, 1 implant of 11 mm and 2 implants of 5 mm length; and group 3, 3 implants of 5 mm length. The abutments heights were 3.5 mm for 13- and 11-mm implants (regular), and 0.8 mm for 5-mm implants (short). Evaluation was performed on Ansys software, oblique loads of 365N for molars and 200N for premolars. There was 50% higher stress on cortical bone for the short implants than regular implants. There was 80% higher stress on trabecular bone for the short implants than regular implants. There was higher stress concentration on the bone region of the short implants neck. However, these implants were capable of dissipating the stress to the bones, given the applied loads, but achieving near the threshold between elastic and plastic deformation to the trabecular bone. Distal implants and/or with biggest occlusal table generated greatest stress regions on the surrounding bone. It was concluded that patients requiring short implants associated with increased proportions implant prostheses need careful evaluation and occlusal adjustment, as a possible overload in these short implants, and even in regular ones, can generate stress beyond the physiological threshold of the surrounding bone, compromising the whole system.
Resumo:
Objective. The purposes of this study were to assess clinical, histopathological and immunohistochemical features of 22 oral neurofibromas (NFs) and discuss with previously described literature, addressing the main aspects regarding the differential diagnosis. Materials and methods. Immunohistochemical reactions included S-100, CD34, GLUT-1, EMA, Ki-67, p53 and Collagen IV and histochemical reactions for Alcian blue. Results. Clinically, the preferential location was the maxillary bones, tongue and buccal mucosa. Microscopically, widely spread spindle-shaped cells with scant cytoplasm and elongated nuclei were observed. Immunostaining revealed that the tumor cells weakly expressed GLUT-1, Collagen IV, Ki-67 and p53. They were variably positive for CD34, S-100 protein and membrane epithelial antigen (EMA). Conclusions. The different types of nerve sheath cells observed in the present series reinforce the presence of heterogeneous population in NFs. The strong positivity for S-100 suggests that the lesions were more composed by S-100-positive Schwann cells than other cells. Besides, the high number of CD34-positive cells suggests that this marker can be useful for the differential diagnosis of NFs against PEN, traumatic neuromas and Schwannomas. Finally, the low immunostaining for p53 and Ki-67 may indicate that NFs massively composed by S-100-positive Schwann cells present low potential of aggressiveness and malignant transformation.
Resumo:
Objective: An experimental in vitro study was carried out to evaluate the influence of cortical bone thickness on ultrasound propagation velocity. Methods: Sixty bone plates were used, made from bovine femurs, with thickness ranging from 1 to 6 mm (10 of each). The ultrasound velocity measurements were performed using a device specially designed for this purpose, in an underwater acoustic tank and with direct contact using contact gel. The transducers were positioned in two ways: on opposite sides, with the bone between them, for the transverse measurement; and parallel to each other, on the same side of the bone plates, for the axial measurements. Results: In the axial transmission mode, the ultrasound velocity speed increased with cortical bone thickness, regardless of the distance between the transducers, up to a thickness of 5 mm, then remained constant thereafter. There were no changes in velocity when the transverse measures were made. Conclusion: Ultrasound velocity increased with cortical bone thickness in the axial transmission mode, until the thickness surpasses the wavelength, after which point it remained constant. Level of Evidence: Experimental Study.
Resumo:
The development of the cartilaginous and bony elements that form the skull and axial and appendicular skeleton is described in detail for the post-ovipositional embryonic development of the fossorial gymnophthalmid species Calyptommatus sinebrachiatus and Nothobachia ablephara. Both species have a snake-like morphology, showing an elongated body and reduced or absent limbs, as well as modifications in skull bones for burrowing, such as complex articulation surfaces and development of bony extensions that enclose and protect the brain. Similar morphological changes have originated independently in several squamate groups, including the one that led to the snake radiation. This study characterizes the patterns of chondrogenesis and osteogenesis, with special emphasis on the features associated with the burrowing habit, and may be used for future comparative analyses of the developmental patterns involved in the origin of the convergent serpentiform morphologies. (C) 2012 Elsevier GmbH. All rights reserved.
Resumo:
Pterosaurs were widely spread throughout the Mesozoic Era, populating the whole world. Among this great diversity, two groups are commonly found in Brazil: the Anhangueridae and Tapejaridae. These can be mainly identified by cranial synapomorphies. However, because of the fragility of the pterosaur skeleton and rarity of the fossilisation process, the fossils found are usually incomplete, which hampers a proper taxonomic identification of the specimens. The specific proportions of these two groups of pterosaurs were obtained from bibliographic data and measurements of specimens. Eight Anhangueridae-like and seven Tapejaridae were used: Anhanguera piscator, Anhanguera santanae, Anhanguera spielbergi, Araripesaurus castilhoi, Barbosania gracilisrostris and three Anhangueridae sp. indet.; Sinopterus dongi, Tapejara wellnhoferi and five Tapejaridae sp. indet. We find that proportions of the humerus, wing metacarpal, first phalanx of the wing digit, femur and tibia are sufficient to identify partial remains of Araripe pterosaurs. A principal component analysis shows that each clade has different, non-overlapping scores in the studied ratios and these can be used with precision. Specific bone ratios for fast identification of anhanguerids and tapejarids are given, opening a broader way to diagnostic fragmentary bones.
Resumo:
The evolutionary history of the lizard family Gymnophthalmidae is characterized by several independent events of morphological modifications to a snake-like body plan, such as limb reduction, body elongation, loss of external ear openings, and modifications in skull bones, as adaptive responses to a burrowing and fossorial lifestyle. The origins of such morphological modifications from an ancestral lizard-like condition can be traced back to evolutionary changes in the developmental processes that coordinate the building of the organism. Thus, the characterization of the embryonic development of gymnophthalmid lizards is an essential step because it lays the foundation for future studies aiming to understand the exact nature of these changes and the developmental mechanisms that could have been responsible for the evolution of a serpentiform (snake-like) from a lacertiform (lizard-like) body form. Here we describe the post-ovipositional embryonic development of the fossorial species Nothobachia ablephara and Calyptommatus sinebrachiatus, presenting a detailed staging system for each one, with special focus on the development of the reduced limbs, and comparing their development to that of other lizard species. The data provided by the staging series are essential for future experimental studies addressing the genetic basis of the evolutionary and developmental variation of the Gymnophthalmidae. (C) 2012 Elsevier GmbH. All rights reserved.
Resumo:
A remarkable cervid bone accumulation occurs at a single passage (named Cervid Passage; CP) at Lapa Nova, a maze cave in eastern Brazil. CP lies away from cave entrances, is a typical pitfall passage and contains bone remains of at least 121 cervids, besides few bats, peccaries and rodents remains. There is no evidence of water (or sediment) flow at the site and in general bones lack post depositional alterations and display anatomical proximity, suggesting that the majority of the remains found inside CP (mainly cervids) are due to animals that after entering the cave got trapped in the site. Observations suggest that two entrances could have provided access to cervids (and the few other animals, besides bats), either by falling inside the cave or by entering by their own free will. Once inside the cave, the maze pattern would make route finding difficult, and of all passage intersections, only the one leading to CP would result in a non-return situation, starving the animal to death. Radiocarbon dates suggest that animal entrapment occurred during at least 5 thousand years, during the Holocene. The reasons why mainly cervids were found are unknown but they are probably related to the biology of this group coupled with the fact that caves provide several specific taphonomic processes that may account for a strong bias in bone accumulation. Indeed, the frequent occurrence of Cervidae in both the fossil and sub-fossil record in Brazilian caves may be related to an overall high faunal abundance or may suggest that these animals were especially prone to enter caves, perhaps in search of nutrients (as cave saltpetre) or water.
Resumo:
Surface treatment interferes with the primary stability of dental implants because it promotes a chemical and micromorphological change on the surface and thus stimulates osseointegration. This study aimed to evaluate the effects of different surface treatments on primary stability by analyzing insertion torque (IT) and pullout force (PF). Eight samples of implants with different surface treatments (TS - external hexagon with acid surface treatment; and MS - external hexagon, machined surface), all 3.75 mm in diameter x 11.5 mm in length, were inserted into segments of artificial bones. The IT of each sample was measured by an electronic torquemeter, and then the pullout test was done with a universal testing machine. The results were subjected to ANOVA (p < 0.05), followed by Tukey's test (p < 0.05). The IT results showed no statistically significant difference, since the sizes of the implants used were very similar, and the bone used was not highly resistant. The PF values (N) were, respectively, TS = 403.75 +/- 189.80 and MS = 276.38 +/- 110.05. The implants were shown to be different in terms of the variables of maximum force (F = 4.401, p = 0.0120), elasticity in maximum flexion (F = 3.672, p = 0.024), and relative stiffness (F = 4.60, p = 0.01). In this study, external hexagonal implants with acid surface treatment showed the highest values of pullout strength and better stability, which provide greater indication for their use.
Resumo:
Osteochondroma is a cartilage capped benign tumor developing mainly at the juxta-epiphyseal region of long bones. The rate of malignant transformation, mainly into chondrosarcoma, is estimated to be less than 1-3%. Transformation into osteosarcoma is very rare and has been reported only thirteen times. There is little information on treatment and outcome. We report the case of a secondary osteosarcoma arising in the left tibia of a 23-year-old male, 10 years after the initial diagnosis of osteochondroma and after two partial resections. Malignant transformation occurred at the stalk and not at the cartilage cap, as would normally be expected. Chromosome banding analysis revealed the karyotype: 46,XY, t(3;13)(q21;q34) [2]/46,XY [18]. Records from additional cases will help determine the parameters that define these rare secondary bone lesions.
Resumo:
Birds are the most diverse and largest group of extant tetrapods. They show marked variability, yet much of this variation is superficial and due to feather and bill color and shape. Under the feathers, the skeleto-muscular system is rather constant throughout the bird group. The adaptation to flight is the explanation for this uniformity. The more obvious morphological adaptations for flight are the wings, but the trunk is always rigid, the tail is short and the neck is flexible, since all these features are correlated with flying behaviour. Unrelated to the exigencies of flight, the legs always have three long bones, and all the birds walk on their toes. This leg structure is a striking plesiomorphic feature that was already present in related dinosaurs. The multi-purpose potential of the legs is the result of the skeletal architecture of a body with three segmented flexed legs. This configuration provides mechanical properties that allow the use of the legs as propulsive, paddling, foraging or grooming tools. It is the association of diverse modes of locomotion-walking, running, hopping, flying and swimming-that have enabled the birds to colonize almost all the environments on Earth.
Resumo:
Chronic kidney diseasemineral bone disorder (CKD-MBD) is defined by abnormalities in mineral and hormone metabolism, bone histomorphometric changes, and/or the presence of soft-tissue calcification. Emerging evidence suggests that features of CKD-MBD may occur early in disease progression and are associated with changes in osteocyte function. To identify early changes in bone, we utilized the jck mouse, a genetic model of polycystic kidney disease that exhibits progressive renal disease. At 6 weeks of age, jck mice have normal renal function and no evidence of bone disease but exhibit continual decline in renal function and death by 20 weeks of age, when approximately 40% to 60% of them have vascular calcification. Temporal changes in serum parameters were identified in jck relative to wild-type mice from 6 through 18 weeks of age and were subsequently shown to largely mirror serum changes commonly associated with clinical CKD-MBD. Bone histomorphometry revealed progressive changes associated with increased osteoclast activity and elevated bone formation relative to wild-type mice. To capture the early molecular and cellular events in the progression of CKD-MBD we examined cell-specific pathways associated with bone remodeling at the protein and/or gene expression level. Importantly, a steady increase in the number of cells expressing phosphor-Ser33/37-beta-catenin was observed both in mouse and human bones. Overall repression of Wnt/beta-catenin signaling within osteocytes occurred in conjunction with increased expression of Wnt antagonists (SOST and sFRP4) and genes associated with osteoclast activity, including receptor activator of NF-?B ligand (RANKL). The resulting increase in the RANKL/osteoprotegerin (OPG) ratio correlated with increased osteoclast activity. In late-stage disease, an apparent repression of genes associated with osteoblast function was observed. These data confirm that jck mice develop progressive biochemical changes in CKD-MBD and suggest that repression of the Wnt/beta-catenin pathway is involved in the pathogenesis of renal osteodystrophy. (C) 2012 American Society for Bone and Mineral Research.
Resumo:
There has been a significant increase in the number of facial fractures stemming from sport activities in recent years, with the nasal bone one of the most affected structures. Researchers recommend the use of a nose protector, but there is no standardization regarding the material employed. Clinical experience has demonstrated that a combination of a flexible and rigid layer of ethylene vinyl acetate (EVA) offers both comfort and safety to practitioners of sports. The aim of the present study was the investigation into the stresses generated by the impact of a rigid body on the nasal bone on models with and without an EVA protector. For such, finite element analysis was employed. A craniofacial model was constructed from images obtained through computed tomography. The nose protector was modeled with two layers of EVA (1 mm of rigid EVA over 2 mm of flexible EVA), following the geometry of the soft tissue. Finite element analysis was performed using the LS Dyna program. The bone and rigid EVA were represented as elastic linear material, whereas the soft tissues and flexible EVA were represented as hyperelastic material. The impact from a rigid sphere on the frontal region of the face was simulated with a constant velocity of 20 m s-1 for 9.1 mu s. The model without the protector served as the control. The distribution of maximal stress of the facial bones was recorded. The maximal stress on the nasal bone surpassed the breaking limit of 0.130.34 MPa on the model without a protector, while remaining below this limit on the model with the protector. Thus, the nose protector made from both flexible and rigid EVA proved effective at protecting the nasal bones under high-impact conditions.