896 resultados para Optimized allocation
Resumo:
Background and problem – As a result of financial crises and the realization of a broader stakeholder network, recent decades have seen an increase in stakeholder demand for non- financial information in corporate reporting. This has led to a situation of information overload where separate financial and sustainability reports have developed in length and complexity interdependent of each other. Integrated reporting has been presented as a solution to this problematic situation. The question is whether the corporate world believe this to be the solution and if the development of corporate reporting is heading in this direction. Purpose - This thesis aims to examine and assess to what extent companies listed on the OMX Stockholm 30 (OMXS30), as per 2016-02-28, comply with the Strategic content element of the <IR> Framework and how this disclosure has developed since the framework’s pilot project and official release by using a self-constructed disclosure index based on its specific items. Methodology – The purpose was fulfilled through an analysis of 104 annual reports comprising 26 companies during the period of 2011-2014. The annual reports were assessed using a self-constructed disclosure index based on the <IR> Framework content element Strategy and Resource Allocation, where one point was given for each disclosed item. Analysis and conclusions – The study found that the OMXS30-listed companies to a large extent complies with the strategic content element of the <IR> Framework and that this compliance has seen a steady growth throughout the researched time span. There is still room for improvement however with a total average framework compliance of 84% for 2014. Although many items are being reported on, there are indications that companies generally miss out on the core values of Integrated reporting.
Resumo:
In many areas of simulation, a crucial component for efficient numerical computations is the use of solution-driven adaptive features: locally adapted meshing or re-meshing; dynamically changing computational tasks. The full advantages of high performance computing (HPC) technology will thus only be able to be exploited when efficient parallel adaptive solvers can be realised. The resulting requirement for HPC software is for dynamic load balancing, which for many mesh-based applications means dynamic mesh re-partitioning. The DRAMA project has been initiated to address this issue, with a particular focus being the requirements of industrial Finite Element codes, but codes using Finite Volume formulations will also be able to make use of the project results.
Resumo:
This paper presents a methodology to explore the impact on poverty of the public spending on education. The methodology consists of two approaches: Benefit Incidence Analysis (BIA) and behavioral approach. BIA considers the cost and use of the educational service, and the distribution of the benefits among groups of income. Regarding the behavioral approach, we use a Probit model of schooling attendance, in order to determinethe influence of public spending on the probability for thepoor to attend the school. As a complement, a measurement of targeting errors in the allocation of public spending is included in the methodology.
Resumo:
Abstract not available
Resumo:
La programmation par contraintes est une technique puissante pour résoudre, entre autres, des problèmes d’ordonnancement de grande envergure. L’ordonnancement vise à allouer dans le temps des tâches à des ressources. Lors de son exécution, une tâche consomme une ressource à un taux constant. Généralement, on cherche à optimiser une fonction objectif telle la durée totale d’un ordonnancement. Résoudre un problème d’ordonnancement signifie trouver quand chaque tâche doit débuter et quelle ressource doit l’exécuter. La plupart des problèmes d’ordonnancement sont NP-Difficiles. Conséquemment, il n’existe aucun algorithme connu capable de les résoudre en temps polynomial. Cependant, il existe des spécialisations aux problèmes d’ordonnancement qui ne sont pas NP-Complet. Ces problèmes peuvent être résolus en temps polynomial en utilisant des algorithmes qui leur sont propres. Notre objectif est d’explorer ces algorithmes d’ordonnancement dans plusieurs contextes variés. Les techniques de filtrage ont beaucoup évolué dans les dernières années en ordonnancement basé sur les contraintes. La proéminence des algorithmes de filtrage repose sur leur habilité à réduire l’arbre de recherche en excluant les valeurs des domaines qui ne participent pas à des solutions au problème. Nous proposons des améliorations et présentons des algorithmes de filtrage plus efficaces pour résoudre des problèmes classiques d’ordonnancement. De plus, nous présentons des adaptations de techniques de filtrage pour le cas où les tâches peuvent être retardées. Nous considérons aussi différentes propriétés de problèmes industriels et résolvons plus efficacement des problèmes où le critère d’optimisation n’est pas nécessairement le moment où la dernière tâche se termine. Par exemple, nous présentons des algorithmes à temps polynomial pour le cas où la quantité de ressources fluctue dans le temps, ou quand le coût d’exécuter une tâche au temps t dépend de t.
Resumo:
Background: Anthropogenic disturbance of old-growth tropical forests increases the abundance of early successional tree species at the cost of late successional ones. Quantifying differences in terms of carbon allocation and the proportion of recently fixed carbon in soil CO2 efflux is crucial for addressing the carbon footprint of creeping degradation. Methodology: We compared the carbon allocation pattern of the late successional gymnosperm Podocarpus falcatus (Thunb.) Mirb. and the early successional (gap filling) angiosperm Croton macrostachyus Hochst. es Del. in an Ethiopian Afromontane forest by whole tree (CO2)-C-13 pulse labeling. Over a one-year period we monitored the temporal resolution of the label in the foliage, the phloem sap, the arbuscular mycorrhiza, and in soil-derived CO2. Further, we quantified the overall losses of assimilated C-13 with soil CO2 efflux. Principal Findings: C-13 in leaves of C. macrostachyus declined more rapidly with a larger size of a fast pool (64% vs. 50% of the assimilated carbon), having a shorter mean residence time (14 h vs. 55 h) as in leaves of P. falcatus. Phloem sap velocity was about 4 times higher for C. macrostachyus. Likewise, the label appeared earlier in the arbuscular mycorrhiza of C. macrostachyus and in the soil CO2 efflux as in case of P. falcatus (24 h vs. 72 h). Within one year soil CO2 efflux amounted to a loss of 32% of assimilated carbon for the gap filling tree and to 15% for the late successional one. Conclusions: Our results showed clear differences in carbon allocation patterns between tree species, although we caution that this experiment was unreplicated. A shift in tree species composition of tropical montane forests (e. g., by degradation) accelerates carbon allocation belowground and increases respiratory carbon losses by the autotrophic community. If ongoing disturbance keeps early successional species in dominance, the larger allocation to fast cycling compartments may deplete soil organic carbon in the long run.
Resumo:
In the half-duplex relay channel applying the decode-and-forward protocol the relay introduces energy over random time intervals into the channel as observed at the destination. Consequently, during simulation the average signal power seen at the destination becomes known at run-time only. Therefore, in order to obtain specific performance measures at the signal-to-noise ratio (SNR) of interest, strategies are required to adjust the noise variance during simulation run-time. It is necessary that these strategies result in the same performance as measured under real-world conditions. This paper introduces three noise power allocation strategies and demonstrates their applicability using numerical and simulation results.
Resumo:
Isocyanates are included into a class with an extreme commercial importance because their use in the manufacture of polyurethanes. Polyurethanes are used in several applications such as adhesives, coatings, foams, thermoplastics resins, printing inks, foundry moulds and rubbers. Agglomerated cork stoppers are currently used for still wines, semi-sparkle and gaseous wines, beer and cider. Methylene diphenyl diisocyanate (MDI) is presently the isocyanate used in the production of polyurethane based adhesive in use due to its lowest toxicity comparing with toluene diisocyanate (TDI) previously employed. However, free monomeric TDI or MDI, depending on the based polyurethane, can migrate from agglomerated cork stoppers to beverages therefore it needs to be under control. The presence of these compounds are usually investigated by HPLC with Fluorescence or UV-Vis detector depending on the derivatising agent. Ultra Performance Liquid Chromatography with Diode Array Detector (UPLC-DAD) method is replacing HPLC. The objective of this study is to determine which method is better to analyze isocyanates from agglomerated cork stoppers, essentially TDI to quantify its monomer. A Design of Experiments (DOE) with three factors, column temperature, flow and solvent, at two levels was done. Eight experiments with three replications and two repetitions were developed. Through an ANOVA the significance of the factors was evaluated and the best level’s factors were selected. As the TDI has two isomers and in this method these two isomers were not always separated an ANOVA with results of resolution between peaks was performed. The Design of Experiments reveals to be a suitable statistical tool to determine the best conditions to quantified free isocyanates from agglomerated cork stoppers to real foodstuff. The best level’s factors to maximize area was column temperature at 30ºC, flow to 0,3 mL/min and solvent 0,1% Ammonium Acetate, to maximize resolution was the same except the solvent that was 0,01% Ammonium Acetate.
Resumo:
A decision-maker, when faced with a limited and fixed budget to collect data in support of a multiple attribute selection decision, must decide how many samples to observe from each alternative and attribute. This allocation decision is of particular importance when the information gained leads to uncertain estimates of the attribute values as with sample data collected from observations such as measurements, experimental evaluations, or simulation runs. For example, when the U.S. Department of Homeland Security must decide upon a radiation detection system to acquire, a number of performance attributes are of interest and must be measured in order to characterize each of the considered systems. We identified and evaluated several approaches to incorporate the uncertainty in the attribute value estimates into a normative model for a multiple attribute selection decision. Assuming an additive multiple attribute value model, we demonstrated the idea of propagating the attribute value uncertainty and describing the decision values for each alternative as probability distributions. These distributions were used to select an alternative. With the goal of maximizing the probability of correct selection we developed and evaluated, under several different sets of assumptions, procedures to allocate the fixed experimental budget across the multiple attributes and alternatives. Through a series of simulation studies, we compared the performance of these allocation procedures to the simple, but common, allocation procedure that distributed the sample budget equally across the alternatives and attributes. We found the allocation procedures that were developed based on the inclusion of decision-maker knowledge, such as knowledge of the decision model, outperformed those that neglected such information. Beginning with general knowledge of the attribute values provided by Bayesian prior distributions, and updating this knowledge with each observed sample, the sequential allocation procedure performed particularly well. These observations demonstrate that managing projects focused on a selection decision so that the decision modeling and the experimental planning are done jointly, rather than in isolation, can improve the overall selection results.
Resumo:
Kidney transplantation is the preferred treatment for many end stage renal disease patients; however, the small number of organs for transplantation does not allow all patients to have access to this scarce resource. An allocation system for deceased donor kidneys should be anchored to transparent policies and rules. It should take into account the relationship between supply and demand, hence seeking a balance between the higher net benefit of survival that can be provided by a particular organ and the transplant candidates’ waiting time (as well as the probability of being transplanted).
Resumo:
Dans cette thèse, nous avons analysé le déroulement d’un processus de municipalisation du système de santé, effectué au Rio Grande do Norte (RN), un des états fédérés du nord-est du Brésil. En tenant compte des contextes historiques d’implantation, nous avons centré notre attention sur la contribution des acteurs impliqués dans ce processus, spécialement dans l’allocation des ressources financières du système. Les croyances, perceptions, attentes, représentations, connaissances, intérêts, l’ensemble des facteurs qui contribuent à la constitution des capacités cognitives de ces acteurs, favorise la réflexivité sur leurs actions et la définition de stratégies diverses de façon à poursuivre leurs objectifs dans le système de santé. Ils sont vus ainsi comme des agents compétents et réflexifs, capables de s’approprier des propriétés structurelles du système de santé (règles et ressources), de façon à prendre position dans l’espace social de ce système pour favoriser le changement ou la permanence du statu quo. Au cours du processus de structuration du Système unique de santé brésilien, le SUS, la municipalisation a été l’axe le plus développé d’un projet de réforme de la santé. Face aux contraintes contextuelles et de la dynamique complexe des espaces sociaux de la santé, les acteurs réformistes n’ont pas pu suivre le chemin de l’utopie idéalisée; quelques détours ont été parcourus. Au RN, la municipalisation de la santé a constitué un processus très complexe où la triade centralisation/décentralisation/recentralisation a suivi son cours au milieu de négociations, de conflits, d’alliances, de disputes, de coopérations, de compétitions. Malgré les contraintes des contextes successifs, des propriétés structurelles du système et des dynamiques sociales dans le système de santé, quelques changements sont intervenus : la construction de leaderships collectifs; l’émergence d’une culture de négociation; la création des structures et des espaces sociaux du système, favorisant les rencontres des acteurs dans chaque municipalité et au niveau de l’état fédéré; un apprentissage collectif sur le processus de structuration du SUS; une grande croissance des services de première ligne permettant d’envisager une inversion de tendance du modèle de prestation des services; les premiers pas vers la rupture avec la culture bureaucratique du système. Le SUS reste prisonnier de quelques enjeux institutionnalisés dans ce système de santé : la dépendance du secteur privé et de quelques groupes de professionnels; le financement insuffisant et instable; la situation des ressources humaines. Les changements arrivés sont convergents, incrémentiels, lents; ils résultent d’actions normatives, délibérées, formalisées. Elles aussi sont issues de l’inattendu, de l’informel, du paradoxe; quelques-unes plus localisées, d’autres plus généralisées, pour une courte ou une plus longue durée.
Resumo:
This document is the Online Supplement to ‘Myopic Allocation Policy with Asymptotically Optimal Sampling Rate,’ to be published in the IEEE Transactions of Automatic Control in 2017.
Resumo:
Social network sites (SNS), such as Facebook, Google+ and Twitter, have attracted hundreds of millions of users daily since their appearance. Within SNS, users connect to each other, express their identity, disseminate information and form cooperation by interacting with their connected peers. The increasing popularity and ubiquity of SNS usage and the invaluable user behaviors and connections give birth to many applications and business models. We look into several important problems within the social network ecosystem. The first one is the SNS advertisement allocation problem. The other two are related to trust mechanisms design in social network setting, including local trust inference and global trust evaluation. In SNS advertising, we study the problem of advertisement allocation from the ad platform's angle, and discuss its differences with the advertising model in the search engine setting. By leveraging the connection between social networks and hyperbolic geometry, we propose to solve the problem via approximation using hyperbolic embedding and convex optimization. A hyperbolic embedding method, \hcm, is designed for the SNS ad allocation problem, and several components are introduced to realize the optimization formulation. We show the advantages of our new approach in solving the problem compared to the baseline integer programming (IP) formulation. In studying the problem of trust mechanisms in social networks, we consider the existence of distrust (i.e. negative trust) relationships, and differentiate between the concept of local trust and global trust in social network setting. In the problem of local trust inference, we propose a 2-D trust model. Based on the model, we develop a semiring-based trust inference framework. In global trust evaluation, we consider a general setting with conflicting opinions, and propose a consensus-based approach to solve the complex problem in signed trust networks.
Resumo:
In energy harvesting communications, users transmit messages using energy harvested from nature. In such systems, transmission policies of the users need to be carefully designed according to the energy arrival profiles. When the energy management policies are optimized, the resulting performance of the system depends only on the energy arrival profiles. In this dissertation, we introduce and analyze the notion of energy cooperation in energy harvesting communications where users can share a portion of their harvested energy with the other users via wireless energy transfer. This energy cooperation enables us to control and optimize the energy arrivals at users to the extent possible. In the classical setting of cooperation, users help each other in the transmission of their data by exploiting the broadcast nature of wireless communications and the resulting overheard information. In contrast to the usual notion of cooperation, which is at the signal level, energy cooperation we introduce here is at the battery energy level. In a multi-user setting, energy may be abundant in one user in which case the loss incurred by transferring it to another user may be less than the gain it yields for the other user. It is this cooperation that we explore in this dissertation for several multi-user scenarios, where energy can be transferred from one user to another through a separate wireless energy transfer unit. We first consider the offline optimal energy management problem for several basic multi-user network structures with energy harvesting transmitters and one-way wireless energy transfer. In energy harvesting transmitters, energy arrivals in time impose energy causality constraints on the transmission policies of the users. In the presence of wireless energy transfer, energy causality constraints take a new form: energy can flow in time from the past to the future for each user, and from one user to the other at each time. This requires a careful joint management of energy flow in two separate dimensions, and different management policies are required depending on how users share the common wireless medium and interact over it. In this context, we analyze several basic multi-user energy harvesting network structures with wireless energy transfer. To capture the main trade-offs and insights that arise due to wireless energy transfer, we focus our attention on simple two- and three-user communication systems, such as the relay channel, multiple access channel and the two-way channel. Next, we focus on the delay minimization problem for networks. We consider a general network topology of energy harvesting and energy cooperating nodes. Each node harvests energy from nature and all nodes may share a portion of their harvested energies with neighboring nodes through energy cooperation. We consider the joint data routing and capacity assignment problem for this setting under fixed data and energy routing topologies. We determine the joint routing of energy and data in a general multi-user scenario with data and energy transfer. Next, we consider the cooperative energy harvesting diamond channel, where the source and two relays harvest energy from nature and the physical layer is modeled as a concatenation of a broadcast and a multiple access channel. Since the broadcast channel is degraded, one of the relays has the message of the other relay. Therefore, the multiple access channel is an extended multiple access channel with common data. We determine the optimum power and rate allocation policies of the users in order to maximize the end-to-end throughput of this system. Finally, we consider the two-user cooperative multiple access channel with energy harvesting users. The users cooperate at the physical layer (data cooperation) by establishing common messages through overheard signals and then cooperatively sending them. For this channel model, we investigate the effect of intermittent data arrivals to the users. We find the optimal offline transmit power and rate allocation policy that maximize the departure region. When the users can further cooperate at the battery level (energy cooperation), we find the jointly optimal offline transmit power and rate allocation policy together with the energy transfer policy that maximize the departure region.