929 resultados para Optimal Linear Control
Análisis de prestaciones de variador de frecuencia Sinamics para el control de velocidad y posición.
Resumo:
[ES]En este documento se exponen los resultados de las diferentes funcionalidades analizadas del variador de frecuencia Sinamics G120. El dispositivo se ha configurado mediante el software de control TIA Portal para la realización de tareas de control de velocidad de un motor de inducción, así como el control de posición del eje del motor y de un eje lineal acoplado al mismo.
Resumo:
[EN]This research had as primary objective to model different types of problems using linear programming and apply different methods so as to find an adequate solution to them. To achieve this objective, a linear programming problem and its dual were studied and compared. For that, linear programming techniques were provided and an introduction of the duality theory was given, analyzing the dual problem and the duality theorems. Then, a general economic interpretation was given and different optimal dual variables like shadow prices were studied through the next practical case: An aesthetic surgery hospital wanted to organize its monthly waiting list of four types of surgeries to maximize its daily income. To solve this practical case, we modelled the linear programming problem following the relationships between the primal problem and its dual. Additionally, we solved the dual problem graphically, and then we found the optimal solution of the practical case posed through its dual, following the different theorems of the duality theory. Moreover, how Complementary Slackness can help to solve linear programming problems was studied. To facilitate the solution Solver application of Excel and Win QSB programme were used.
Resumo:
Neste trabalho, será considerado um problema de controle ótimo quadrático para a equação do calor em domínios retangulares com condição de fronteira do tipo Dirichlet é nos quais, a função de controle (dependente apenas no tempo) constitui um termo de fonte. Uma caracterização da solução ótima é obtida na forma de uma equação linear em um espaço de funções reais definidas no intervalo de tempo considerado. Em seguida, utiliza-se uma sequência de projeções em subespaços de dimensão finita para obter aproximações para o controle ótimo, o cada uma das quais pode ser gerada por um sistema linear de dimensão finita. A sequência de soluções aproximadas assim obtidas converge para a solução ótima do problema original. Finalmente, são apresentados resultados numéricos para domínios espaciais de dimensão 1.