911 resultados para Operational validation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 1999, the National Commission for the Knowledge and Use of the Biodiversity (CONABIO) in Mexico has been developing and managing the “Operational program for the detection of hot-spots using remote sensing techniques”. This program uses images from the MODerate resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites and from the Advanced Very High Resolution Radiometer of the National Oceanic and Atmospheric Administration (NOAA-AVHRR), which are operationally received through the Direct Readout station (DR) at CONABIO. This allows the near-real time monitoring of fire events in Mexico and Central America. In addition to the detection of active fires, the location of hot spots are classified with respect to vegetation types, accessibility, and risk to Nature Protection Areas (NPA). Besides the fast detection of fires, further analysis is necessary due to the considerable effects of forest fires on biodiversity and human life. This fire impact assessment is crucial to support the needs of resource managers and policy makers for adequate fire recovery and restoration actions. CONABIO attempts to meet these requirements, providing post-fire assessment products as part of the management system in particular for satellite-based burnt area mapping. This paper provides an overview of the main components of the operational system and will present an outlook to future activities and system improvements, especially the development of a burnt area product. A special focus will also be placed on the fire occurrence within NPAs of Mexico

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulation models are widely employed to make probability forecasts of future conditions on seasonal to annual lead times. Added value in such forecasts is reflected in the information they add, either to purely empirical statistical models or to simpler simulation models. An evaluation of seasonal probability forecasts from the Development of a European Multimodel Ensemble system for seasonal to inTERannual prediction (DEMETER) and ENSEMBLES multi-model ensemble experiments is presented. Two particular regions are considered: Nino3.4 in the Pacific and the Main Development Region in the Atlantic; these regions were chosen before any spatial distribution of skill was examined. The ENSEMBLES models are found to have skill against the climatological distribution on seasonal time-scales. For models in ENSEMBLES that have a clearly defined predecessor model in DEMETER, the improvement from DEMETER to ENSEMBLES is discussed. Due to the long lead times of the forecasts and the evolution of observation technology, the forecast-outcome archive for seasonal forecast evaluation is small; arguably, evaluation data for seasonal forecasting will always be precious. Issues of information contamination from in-sample evaluation are discussed and impacts (both positive and negative) of variations in cross-validation protocol are demonstrated. Other difficulties due to the small forecast-outcome archive are identified. The claim that the multi-model ensemble provides a ‘better’ probability forecast than the best single model is examined and challenged. Significant forecast information beyond the climatological distribution is also demonstrated in a persistence probability forecast. The ENSEMBLES probability forecasts add significantly more information to empirical probability forecasts on seasonal time-scales than on decadal scales. Current operational forecasts might be enhanced by melding information from both simulation models and empirical models. Simulation models based on physical principles are sometimes expected, in principle, to outperform empirical models; direct comparison of their forecast skill provides information on progress toward that goal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dietary assessment in older adults can be challenging. The Novel Assessment of Nutrition and Ageing (NANA) method is a touch-screen computer-based food record that enables older adults to record their dietary intakes. The objective of the present study was to assess the relative validity of the NANA method for dietary assessment in older adults. For this purpose, three studies were conducted in which a total of ninety-four older adults (aged 65–89 years) used the NANA method of dietary assessment. On a separate occasion, participants completed a 4 d estimated food diary. Blood and 24 h urine samples were also collected from seventy-six of the volunteers for the analysis of biomarkers of nutrient intake. The results from all the three studies were combined, and nutrient intake data collected using the NANA method were compared against the 4 d estimated food diary and biomarkers of nutrient intake. Bland–Altman analysis showed a reasonable agreement between the dietary assessment methods for energy and macronutrient intake; however, there were small, but significant, differences for energy and protein intake, reflecting the tendency for the NANA method to record marginally lower energy intakes. Significant positive correlations were observed between urinary urea and dietary protein intake using both the NANA and the 4 d estimated food diary methods, and between plasma ascorbic acid and dietary vitamin C intake using the NANA method. The results demonstrate the feasibility of computer-based dietary assessment in older adults, and suggest that the NANA method is comparable to the 4 d estimated food diary, and could be used as an alternative to the food diary for the short-term assessment of an individual’s dietary intake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prospective measurement of nutrition, cognition, and physical activity in later life would facilitate early detection of detrimental change and early intervention but is hard to achieve in community settings. Technology can simplify the task and facilitate daily data collection. The Novel Assessment of Nutrition and Ageing (NANA) toolkit was developed to provide a holistic picture of an individual's function including diet, cognition and activity levels. This study aimed to validate the NANA toolkit for data collection in the community. Forty participants aged 65 years and over trialled the NANA toolkit in their homes for three 7-day periods at four-week intervals. Data collected using the NANA toolkit were compared with standard measures of diet (four-day food diary), cognitive ability (processing speed) and physical activity (self-report). Bland–Altman analysis of dietary intake (energy, carbohydrates, protein fat) found a good relationship with the food diary and cognitive processing speed and physical activity (hours) were significantly correlated with their standard counterparts. The NANA toolkit enables daily reporting of data that would otherwise be collected sporadically while reducing demands on participants; older adults can complete the daily reporting at home without a researcher being present; and it enables prospective investigation of several domains at once

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Canopy Height Profile (CHP) procedure presented in Harding et al. (2001) for large footprint LiDAR data was tested in a closed canopy environment as a way of extracting vertical foliage profiles from LiDAR raw-waveform. In this study, an adaptation of this method to small-footprint data has been shown, tested and validated in an Australian sparse canopy forest at plot- and site-level. Further, the methodology itself has been enhanced by implementing a dataset-adjusted reflectance ratio calculation according to Armston et al. (2013) in the processing chain, and tested against a fixed ratio of 0.5 estimated for the laser wavelength of 1550nm. As a by-product of the methodology, effective leaf area index (LAIe) estimates were derived and compared to hemispherical photography-derived values. To assess the influence of LiDAR aggregation area size on the estimates in a sparse canopy environment, LiDAR CHPs and LAIes were generated by aggregating waveforms to plot- and site-level footprints (plot/site-aggregated) as well as in 5m grids (grid-processed). LiDAR profiles were then compared to leaf biomass field profiles generated based on field tree measurements. The correlation between field and LiDAR profiles was very high, with a mean R2 of 0.75 at plot-level and 0.86 at site-level for 55 plots and the corresponding 11 sites. Gridding had almost no impact on the correlation between LiDAR and field profiles (only marginally improvement), nor did the dataset-adjusted reflectance ratio. However, gridding and the dataset-adjusted reflectance ratio were found to improve the correlation between raw-waveform LiDAR and hemispherical photography LAIe estimates, yielding the highest correlations of 0.61 at plot-level and of 0.83 at site-level. This proved the validity of the approach and superiority of dataset-adjusted reflectance ratio of Armston et al. (2013) over a fixed ratio of 0.5 for LAIe estimation, as well as showed the adequacy of small-footprint LiDAR data for LAIe estimation in discontinuous canopy forests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Awareness of emerging situations in a dynamic operational environment of a robotic assistive device is an essential capability of such a cognitive system, based on its effective and efficient assessment of the prevailing situation. This allows the system to interact with the environment in a sensible (semi)autonomous / pro-active manner without the need for frequent interventions from a supervisor. In this paper, we report a novel generic Situation Assessment Architecture for robotic systems directly assisting humans as developed in the CORBYS project. This paper presents the overall architecture for situation assessment and its application in proof-of-concept Demonstrators as developed and validated within the CORBYS project. These include a robotic human follower and a mobile gait rehabilitation robotic system. We present an overview of the structure and functionality of the Situation Assessment Architecture for robotic systems with results and observations as collected from initial validation on the two CORBYS Demonstrators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in the depth of Lake Viljandi between 1940 and 1990 were simulated using a lake water and energy-balance model driven by standard monthly weather data. Catchment runoff was simulated using a one-dimensional hydrological model, with a two-layer soil, a single-layer snowpack, a simple representation of vegetation cover and similarly modest input requirements. Outflow was modelled as a function of lake level. The simulated record of lake level and outflow matched observations of lake-level variations (r = 0.78) and streamflow (r = 0.87) well. The ability of the model to capture both intra- and inter-annual variations in the behaviour of a specific lake, despite the relatively simple input requirements, makes it extremely suitable for investigations of the impacts of climate change on lake water balance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate and reliable rain rate estimates are important for various hydrometeorological applications. Consequently, rain sensors of different types have been deployed in many regions. In this work, measurements from different instruments, namely, rain gauge, weather radar, and microwave link, are combined for the first time to estimate with greater accuracy the spatial distribution and intensity of rainfall. The objective is to retrieve the rain rate that is consistent with all these measurements while incorporating the uncertainty associated with the different sources of information. Assuming the problem is not strongly nonlinear, a variational approach is implemented and the Gauss–Newton method is used to minimize the cost function containing proper error estimates from all sensors. Furthermore, the method can be flexibly adapted to additional data sources. The proposed approach is tested using data from 14 rain gauges and 14 operational microwave links located in the Zürich area (Switzerland) to correct the prior rain rate provided by the operational radar rain product from the Swiss meteorological service (MeteoSwiss). A cross-validation approach demonstrates the improvement of rain rate estimates when assimilating rain gauge and microwave link information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is little consensus on how agriculture will meet future food demands sustainably. Soils and their biota play a crucial role by mediating ecosystem services that support agricultural productivity. However, a multitude of site-specific environmental factors and management practices interact to affect the ability of soil biota to perform vital functions, confounding the interpretation of results from experimental approaches. Insights can be gained through models, which integrate the physiological, biological and ecological mechanisms underpinning soil functions. We present a powerful modelling approach for predicting how agricultural management practices (pesticide applications and tillage) affect soil functioning through earthworm populations. By combining energy budgets and individual-based simulation models, and integrating key behavioural and ecological drivers, we accurately predict population responses to pesticide applications in different climatic conditions. We use the model to analyse the ecological consequences of different weed management practices. Our results demonstrate that an important link between agricultural management (herbicide applications and zero, reduced and conventional tillage) and earthworms is the maintenance of soil organic matter (SOM). We show how zero and reduced tillage practices can increase crop yields while preserving natural ecosystem functions. This demonstrates how management practices which aim to sustain agricultural productivity should account for their effects on earthworm populations, as their proliferation stimulates agricultural productivity. Synthesis and applications. Our results indicate that conventional tillage practices have longer term effects on soil biota than pesticide control, if the pesticide has a short dissipation time. The risk of earthworm populations becoming exposed to toxic pesticides will be reduced under dry soil conditions. Similarly, an increase in soil organic matter could increase the recovery rate of earthworm populations. However, effects are not necessarily additive and the impact of different management practices on earthworms depends on their timing and the prevailing environmental conditions. Our model can be used to determine which combinations of crop management practices and climatic conditions pose least overall risk to earthworm populations. Linking our model mechanistically to crop yield models would aid the optimization of crop management systems by exploring the trade-off between different ecosystem services.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Between December 2010 and March 2013, volunteers for the Solar Stormwatch (SSW) Citizen Science project have identified and analyzed coronal mass ejections (CMEs) in the near real-time Solar Terrestrial Relations Observatory Heliospheric Imager observations, in order to make “Fearless Forecasts” of CME arrival times and speeds at Earth. Of the 60 predictions of Earth-directed CMEs, 20 resulted in an identifiable Interplanetary CME (ICME) at Earth within 1.5–6 days, with an average error in predicted transit time of 22 h, and average transit time of 82.3 h. The average error in predicting arrival speed is 151 km s−1, with an average arrival speed of 425km s−1. In the same time period, there were 44 CMEs for which there are no corresponding SSW predictions, and there were 600 days on which there was neither a CME predicted nor observed. A number of metrics show that the SSW predictions do have useful forecast skill; however, there is still much room for improvement. We investigate potential improvements by using SSW inputs in three models of ICME propagation: two of constant acceleration and one of aerodynamic drag. We find that taking account of interplanetary acceleration can improve the average errors of transit time to 19 h and arrival speed to 77 km s−1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphing fears (also called transformation obsessions) involve concerns that a person may become contaminated by and acquire undesirable characteristics of others. These symptoms are found in patients with OCD and are thought to be related to mental contamination. Given the high levels of distress and interference morphing fears can cause, a reliable and valid assessment measure is needed. This article describes the development and evaluation of the Morphing Fear Questionnaire (MFQ), a 13-item measure designed to assess for the presence and severity of morphing fears. A sample of 900 participants took part in the research. Of these, 140 reported having a current diagnosis of OCD (SR-OCD) and 760 reported never having had OCD (N-OCD; of whom 24 reported a diagnosis of an anxiety disorder and 23 reported a diagnosis of depression). Factor structure, reliability, and construct and criterion related validity were investigated. Exploratory and confirmatory factor analyses supported a one-factor structure replicable across the N-OCD and SR-OCD group. The MFQ was found to have high internal consistency and good temporal stability, and showed significantly greater associations with convergent measures (assessing obsessive-compulsive symptoms, mental contamination, thought-action fusion and magical thinking) than with divergent measures (assessing depression and anxiety). Moreover, the MFQ successfully discriminated between the SR-OCD sample and the N-OCD group, anxiety disorder sample, and depression sample. These findings suggest that the MFQ has sound psychometric properties and that it can be used to assess morphing fear. Clinical implications are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The general circulation models used to simulate global climate typically feature resolution too coarse to reproduce many smaller-scale processes, which are crucial to determining the regional responses to climate change. A novel approach to downscale climate change scenarios is presented which includes the interactions between the North Atlantic Ocean and the European shelves as well as their impact on the North Atlantic and European climate. The goal of this paper is to introduce the global ocean-regional atmosphere coupling concept and to show the potential benefits of this model system to simulate present-day climate. A global ocean-sea ice-marine biogeochemistry model (MPIOM/HAMOCC) with regionally high horizontal resolution is coupled to an atmospheric regional model (REMO) and global terrestrial hydrology model (HD) via the OASIS coupler. Moreover, results obtained with ROM using NCEP/NCAR reanalysis and ECHAM5/MPIOM CMIP3 historical simulations as boundary conditions are presented and discussed for the North Atlantic and North European region. The validation of all the model components, i.e., ocean, atmosphere, terrestrial hydrology, and ocean biogeochemistry is performed and discussed. The careful and detailed validation of ROM provides evidence that the proposed model system improves the simulation of many aspects of the regional climate, remarkably the ocean, even though some biases persist in other model components, thus leaving potential for future improvement. We conclude that ROM is a powerful tool to estimate possible impacts of climate change on the regional scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents SPARE-ICE, the Synergistic Passive Atmospheric Retrieval Experiment-ICE. SPARE-ICE is the first Ice Water Path (IWP) product combining infrared and microwave radiances. By using only passive operational sensors, the SPARE-ICE retrieval can be used to process data from at least the NOAA 15 to 19 and MetOp satellites, obtaining time series from 1998 onward. The retrieval is developed using collocations between passive operational sensors (solar, terrestrial infrared, microwave), the CloudSat radar, and the CALIPSO lidar. The collocations form a retrieval database matching measurements from passive sensors against the existing active combined radar-lidar product 2C-ICE. With this retrieval database, we train a pair of artificial neural networks to detect clouds and retrieve IWP. When considering solar, terrestrial infrared, and microwave-based measurements, we show that any combination of two techniques performs better than either single-technique retrieval. We choose not to include solar reflectances in SPARE-ICE, because the improvement is small, and so that SPARE-ICE can be retrieved both daytime and nighttime. The median fractional error between SPARE-ICE and 2C-ICE is around a factor 2, a figure similar to the random error between 2C-ICE ice water content (IWC) and in situ measurements. A comparison of SPARE-ICE with Moderate Resolution Imaging Spectroradiometer (MODIS), Pathfinder Atmospheric Extended (PATMOS-X), and Microwave Surface and Precipitation Products System (MSPPS) indicates that SPARE-ICE appears to perform well even in difficult conditions. SPARE-ICE is available for public use.