965 resultados para Operational parameters
Resumo:
Using grand canonical Monte Carlo simulation we show, for the first time, the influence of the carbon porosity and surface oxidation on the parameters of the Dubinin-Astakhov (DA) adsorption isotherm equation. We conclude that upon carbon surface oxidation, the adsorption decreases for all carbons studied. Moreover, the parameters of the DA model depend on the number of surface oxygen groups. That is why in the case of carbons containing surface polar groups, SF(6) adsorption isotherm data cannot be used for characterization of the porosity.
An evaluation of boundary-layer depth, inversion and entrainment parameters by large-eddy simulation
Resumo:
The Along-Track Scanning Radiometers (ATSRs) provide a long time-series of measurements suitable for the retrieval of cloud properties. This work evaluates the freely-available Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) dataset (version 3) created from the ATSR-2 (1995�2003) and Advanced ATSR (AATSR; 2002 onwards) records. Users are recommended to consider only retrievals flagged as high-quality, where there is a good consistency between the measurements and the retrieved state (corresponding to about 60% of converged retrievals over sea, and more than 80% over land). Cloud properties are found to be generally free of any significant spurious trends relating to satellite zenith angle. Estimates of the random error on retrieved cloud properties are suggested to be generally appropriate for optically-thick clouds, and up to a factor of two too small for optically-thin cases. The correspondence between ATSR-2 and AATSR cloud properties is high, but a relative calibration difference between the sensors of order 5�10% at 660 nm and 870 nm limits the potential of the current version of the dataset for trend analysis. As ATSR-2 is thought to have the better absolute calibration, the discussion focusses on this portion of the record. Cloud-top heights from GRAPE compare well to ground-based data at four sites, particularly for shallow clouds. Clouds forming in boundary-layer inversions are typically around 1 km too high in GRAPE due to poorly-resolved inversions in the modelled temperature profiles used. Global cloud fields are compared to satellite products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements, and a climatology of liquid water content derived from satellite microwave radiometers. In all cases the main reasons for differences are linked to differing sensitivity to, and treatment of, multi-layer cloud systems. The correlation coefficient between GRAPE and the two MODIS products considered is generally high (greater than 0.7 for most cloud properties), except for liquid and ice cloud effective radius, which also show biases between the datasets. For liquid clouds, part of the difference is linked to choice of wavelengths used in the retrieval. Total cloud cover is slightly lower in GRAPE (0.64) than the CALIOP dataset (0.66). GRAPE underestimates liquid cloud water path relative to microwave radiometers by up to 100 g m�2 near the Equator and overestimates by around 50 g m�2 in the storm tracks. Finally, potential future improvements to the algorithm are outlined.
Resumo:
BACKGROUND: Strawberry (Fragaria × ananassa Duchesne var. Elsanta) plants were grown in polytunnels covered with three polythene films that transmitted varying levels of ultraviolet (UV) light. Fruit were harvested under near-commercial conditions and quality and yield were measured. During ripening, changes in the colour parameters of individual fruit were monitored, and the accuracy of using surface colour to predict other quality parameters was determined by analysing the correlation between colour and quality parameters within UV treatments. RESULTS: Higher exposure to UV during growth resulted in the fruit becoming darker at harvest and developing surface colour more quickly; fruit were also firmer at harvest, but shelf life was not consistently affected by the UV regime. Surface colour measurements were poorly correlated to firmness, shelf life or total phenolics, anthocyanins and ellagic acid contents. CONCLUSION: Although surface colour of strawberry fruits was affected by the UV regime during growth, and this parameter is an important factor in consumer perception, we concluded that the surface colour at the time of harvest was, contrary to consumer expectations, a poor indicator of firmness, potential shelf life or anthocyanin content. Copyright © 2011 Society of Chemical Industry
Resumo:
Herd Companion uses routine milk‐recording records to generate twelve‐month rolling averages that indicate performance trends. This article looks at Herd Somatic Cell Count (SCC) and four other SCC‐related parameters from 252 National Milk Records (NMR) recorded herds to assess how each parameter correlates with the Herd SCC. The analysis provides evidence for the importance of targeting individual cows with high SCC recordings (>200,000 cells/ml and >500,000 cells/ml) and/or individual cows with repeatedly high SCC recordings (chronic high SCC) and/or cows that begin lactation with a high SCC recording (dry period infection) in order to achieve bulk milk Herd SCC below 200,000 cells/ml.
Resumo:
We present a descriptive overview of the meteorology in the south eastern subtropical Pacific (SEP) during the VOCALS-REx intensive observations campaign which was carried out between October and November 2008. Mainly based on data from operational analyses, forecasts, reanalysis, and satellite observations, we focus on spatio-temporal scales from synoptic to planetary. A climatological context is given within which the specific conditions observed during the campaign are placed, with particular reference to the relationships between the large-scale and the regional circulations. The mean circulations associated with the diurnal breeze systems are also discussed. We then provide a summary of the day-to-day synoptic-scale circulation, air-parcel trajectories, and cloud cover in the SEP during VOCALS-REx. Three meteorologically distinct periods of time are identified and the large-scale causes for their different character are discussed. The first period was characterised by significant variability associated with synoptic-scale systems interesting the SEP; while the two subsequent phases were affected by planetary-scale disturbances with a slower evolution. The changes between initial and later periods can be partly explained from the regular march of the annual cycle, but contributions from subseasonal variability and its teleconnections were important. Across the whole of the two months under consideration we find a significant correlation between the depth of the inversion-capped marine boundary layer (MBL) and the amount of low cloud in the area of study. We discuss this correlation and argue that at least as a crude approximation a typical scaling may be applied relating MBL and cloud properties with the large-scale parameters of SSTs and tropospheric temperatures. These results are consistent with previously found empirical relationships involving lower-tropospheric stability.
Resumo:
The paper presents an analysis of WAXS (wide-angle X-ray scattering) data which aids an understanding of the structure of non-crystalline polymers. Experimental results are compared with calculations of scattering from possible models. Evidence is presented which supports the view that the chains in molten PE do not lie parallel but have a conformation in accord with the predictions of energy calculations. However, the evidence indicates that in “molten” PTFE the chains lie parallel over distances well in excess of their diameters. WAXS-based proposals are made for the conformations of a-PMMA and a-PS.
Resumo:
The organization of non-crystalline polymeric materials at a local level, namely on a spatial scale between a few and 100 a, is still unclear in many respects. The determination of the local structure in terms of the configuration and conformation of the polymer chain and of the packing characteristics of the chain in the bulk material represents a challenging problem. Data from wide-angle diffraction experiments are very difficult to interpret due to the very large amount of information that they carry, that is the large number of correlations present in the diffraction patterns.We describe new approaches that permit a detailed analysis of the complex neutron diffraction patterns characterizing polymer melts and glasses. The coupling of different computer modelling strategies with neutron scattering data over a wide Q range allows the extraction of detailed quantitative information on the structural arrangements of the materials of interest. Proceeding from modelling routes as diverse as force field calculations, single-chain modelling and reverse Monte Carlo, we show the successes and pitfalls of each approach in describing model systems, which illustrate the need to attack the data analysis problem simultaneously from several fronts.
Resumo:
A direct method is presented for determining the uncertainty in reservoir pressure, flow, and net present value (NPV) using the time-dependent, one phase, two- or three-dimensional equations of flow through a porous medium. The uncertainty in the solution is modelled as a probability distribution function and is computed from given statistical data for input parameters such as permeability. The method generates an expansion for the mean of the pressure about a deterministic solution to the system equations using a perturbation to the mean of the input parameters. Hierarchical equations that define approximations to the mean solution at each point and to the field covariance of the pressure are developed and solved numerically. The procedure is then used to find the statistics of the flow and the risked value of the field, defined by the NPV, for a given development scenario. This method involves only one (albeit complicated) solution of the equations and contrasts with the more usual Monte-Carlo approach where many such solutions are required. The procedure is applied easily to other physical systems modelled by linear or nonlinear partial differential equations with uncertain data.
Resumo:
Physiological and yield traits such as stomatal conductance (mmol m-2s-1), Leaf relative water content (RWC %) and grain yield per plant were studied in a separate experiment. Results revealed that five out of sixteen cultivars viz. Anmol, Moomal, Sarsabz, Bhitai and Pavan, appeared to be relatively more drought tolerant. Based on morphophysiological results, studies were continued to look at these cultivars for drought tolerance at molecular level. Initially, four well recognized primers for dehydrin genes (DHNs) responsible for drought induction in T. durum L., T. aestivum L. and O. sativa L. were used for profiling gene sequence of sixteen wheat cultivars. The primers amplified the DHN genes variably like Primer WDHN13 (T. aestivum L.) amplified the DHN gene in only seven cultivars whereas primer TdDHN15 (T. durum L.) amplified all the sixteen cultivars with even different DNA banding patterns some showing second weaker DNA bands. Third primer TdDHN16 (T. durum L.) has shown entirely different PCR amplification prototype, specially showing two strong DNA bands while fourth primer RAB16C (O. sativa L.) failed to amplify DHN gene in any of the cultivars. Examination of DNA sequences revealed several interesting features. First, it identified the two exon/one intron structure of this gene (complete sequences were not shown), a feature not previously described in the two database cDNA sequences available from T. aestivum L. (gi|21850). Secondly, the analysis identified several single nucleotide polymorphisms (SNPs), positions in gene sequence. Although complete gene sequence was not obtained for all the cultivars, yet there were a total of 38 variable positions in exonic (coding region) sequence, from a total gene length of 453 nucleotides. Matrix of SNP shows these 37 positions with individual sequence at positions given for each of the 14 cultivars (sequence of two cultivars was not obtained) included in this analysis. It demonstrated a considerable diversity for this gene with only three cultivars i.e. TJ-83, Marvi and TD-1 being similar to the consensus sequence. All other cultivars showed a unique combination of SNPs. In order to prove a functional link between these polymorphisms and drought tolerance in wheat, it would be necessary to conduct a more detailed study involving directed mutation of this gene and DHN gene expression.
Resumo:
Current methods for estimating vegetation parameters are generally sub-optimal in the way they exploit information and do not generally consider uncertainties. We look forward to a future where operational dataassimilation schemes improve estimates by tracking land surface processes and exploiting multiple types of observations. Dataassimilation schemes seek to combine observations and models in a statistically optimal way taking into account uncertainty in both, but have not yet been much exploited in this area. The EO-LDAS scheme and prototype, developed under ESA funding, is designed to exploit the anticipated wealth of data that will be available under GMES missions, such as the Sentinel family of satellites, to provide improved mapping of land surface biophysical parameters. This paper describes the EO-LDAS implementation, and explores some of its core functionality. EO-LDAS is a weak constraint variational dataassimilationsystem. The prototype provides a mechanism for constraint based on a prior estimate of the state vector, a linear dynamic model, and EarthObservationdata (top-of-canopy reflectance here). The observation operator is a non-linear optical radiative transfer model for a vegetation canopy with a soil lower boundary, operating over the range 400 to 2500 nm. Adjoint codes for all model and operator components are provided in the prototype by automatic differentiation of the computer codes. In this paper, EO-LDAS is applied to the problem of daily estimation of six of the parameters controlling the radiative transfer operator over the course of a year (> 2000 state vector elements). Zero and first order process model constraints are implemented and explored as the dynamic model. The assimilation estimates all state vector elements simultaneously. This is performed in the context of a typical Sentinel-2 MSI operating scenario, using synthetic MSI observations simulated with the observation operator, with uncertainties typical of those achieved by optical sensors supposed for the data. The experiments consider a baseline state vector estimation case where dynamic constraints are applied, and assess the impact of dynamic constraints on the a posteriori uncertainties. The results demonstrate that reductions in uncertainty by a factor of up to two might be obtained by applying the sorts of dynamic constraints used here. The hyperparameter (dynamic model uncertainty) required to control the assimilation are estimated by a cross-validation exercise. The result of the assimilation is seen to be robust to missing observations with quite large data gaps.
Resumo:
Linear models of bidirectional reflectance distribution are useful tools for understanding the angular variability of surface reflectance as observed by medium-resolution sensors such as the Moderate Resolution Imaging Spectrometer. These models are operationally used to normalize data to common view and illumination geometries and to calculate integral quantities such as albedo. Currently, to compensate for noise in observed reflectance, these models are inverted against data collected during some temporal window for which the model parameters are assumed to be constant. Despite this, the retrieved parameters are often noisy for regions where sufficient observations are not available. This paper demonstrates the use of Lagrangian multipliers to allow arbitrarily large windows and, at the same time, produce individual parameter sets for each day even for regions where only sparse observations are available.
Resumo:
The translation of an ensemble of model runs into a probability distribution is a common task in model-based prediction. Common methods for such ensemble interpretations proceed as if verification and ensemble were draws from the same underlying distribution, an assumption not viable for most, if any, real world ensembles. An alternative is to consider an ensemble as merely a source of information rather than the possible scenarios of reality. This approach, which looks for maps between ensembles and probabilistic distributions, is investigated and extended. Common methods are revisited, and an improvement to standard kernel dressing, called ‘affine kernel dressing’ (AKD), is introduced. AKD assumes an affine mapping between ensemble and verification, typically not acting on individual ensemble members but on the entire ensemble as a whole, the parameters of this mapping are determined in parallel with the other dressing parameters, including a weight assigned to the unconditioned (climatological) distribution. These amendments to standard kernel dressing, albeit simple, can improve performance significantly and are shown to be appropriate for both overdispersive and underdispersive ensembles, unlike standard kernel dressing which exacerbates over dispersion. Studies are presented using operational numerical weather predictions for two locations and data from the Lorenz63 system, demonstrating both effectiveness given operational constraints and statistical significance given a large sample.