883 resultados para OpenCV Computer Vision Object Detection Automatic Counting


Relevância:

40.00% 40.00%

Publicador:

Resumo:

To retrospectively analyze the performance of a commercial computer-aided diagnosis (CAD) software in the detection of pulmonary nodules in original and energy-subtracted (ES) chest radiographs.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of our study was to compare the effect of dual-energy subtraction and bone suppression software alone and in combination with computer-aided detection (CAD) on the performance of human observers in lung nodule detection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: The clinical role of CAD systems to detect breast cancer, which have not been on cancer containing mammograms not detected by the radiologist was proven retrospectively. METHODS: All patients from 1992 to 2005 with a histologically verified malignant breast lesion and a mammogram at our department, were analyzed in retrospect focussing on the time of detection of the malignant lesion. All prior mammograms were analyzed by CAD (CADx, USA). The resulting CAD printout was matched with the cancer containing images yielding to the radiological diagnosis of breast cancer. CAD performance, sensitivity as well as the association of CAD and radiological features were analyzed. RESULTS: 278 mammograms fulfilled the inclusion criteria. 111 cases showed a retrospectively visible lesion (71 masses, 23 single microcalcification clusters, 16 masses with microcalcifications, in one case two microcalcification clusters). 54/87 masses and 34/41 microcalcifications were detected by CAD. Detection rates varied from 9/20 (ACR 1) to 5/7 (ACR 4) (45% vs. 71%). The detection of microcalcifications was not influenced by breast tissue density. CONCLUSION: CAD might be useful in an earlier detection of subtle breast cancer cases, which might remain otherwise undetected.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a new method for fully-automatic landmark detection and shape segmentation in X-ray images. Our algorithm works by estimating the displacements from image patches to the (unknown) landmark positions and then integrating them via voting. The fundamental contribution is that, we jointly estimate the displacements from all patches to multiple landmarks together, by considering not only the training data but also geometric constraints on the test image. The various constraints constitute a convex objective function that can be solved efficiently. Validated on three challenging datasets, our method achieves high accuracy in landmark detection, and, combined with statistical shape model, gives a better performance in shape segmentation compared to the state-of-the-art methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVES To find the best pairing of first and second reader at highest sensitivity for detecting lung nodules with CT at various dose levels. MATERIALS AND METHODS An anthropomorphic lung phantom and artificial lung nodules were used to simulate screening CT-examination at standard dose (100 mAs, 120 kVp) and 8 different low dose levels, using 120, 100 and 80 kVp combined with 100, 50 and 25 mAs. At each dose level 40 phantoms were randomly filled with 75 solid and 25 ground glass nodules (5-12 mm). Two radiologists and 3 different computer aided detection softwares (CAD) were paired to find the highest sensitivity. RESULTS Sensitivities at standard dose were 92%, 90%, 84%, 79% and 73% for reader 1, 2, CAD1, CAD2, CAD3, respectively. Combined sensitivity for human readers 1 and 2 improved to 97%, (p1=0.063, p2=0.016). Highest sensitivities--between 97% and 99.0%--were achieved by combining any radiologist with any CAD at any dose level. Combining any two CADs, sensitivities between 85% and 88% were significantly lower than for radiologists combined with CAD (p<0.03). CONCLUSIONS Combination of a human observer with any of the tested CAD systems provide optimal sensitivity for lung nodule detection even at reduced dose at 25 mAs/80 kVp.