972 resultados para One-inclusion mistake bounds
Resumo:
We solve the wave equations of arbitrary integer spin fields in the BTZ black hole background and obtain exact expressions for their quasinormal modes. We show that these quasinormal modes precisely agree with the location of the poles of the corresponding two point function in the dual conformal field theory as predicted by the AdS/CFT correspondence. We then use these quasinormal modes to construct the one-loop determinant of the higher spin field in the thermal BTZ background. This is shown to agree with that obtained from the corresponding heat kernel constructed recently by group theoretic methods.
Resumo:
Given two independent Poisson point processes Phi((1)), Phi((2)) in R-d, the AB Poisson Boolean model is the graph with the points of Phi((1)) as vertices and with edges between any pair of points for which the intersection of balls of radius 2r centered at these points contains at least one point of Phi((2)). This is a generalization of the AB percolation model on discrete lattices. We show the existence of percolation for all d >= 2 and derive bounds fora critical intensity. We also provide a characterization for this critical intensity when d = 2. To study the connectivity problem, we consider independent Poisson point processes of intensities n and tau n in the unit cube. The AB random geometric graph is defined as above but with balls of radius r. We derive a weak law result for the largest nearest-neighbor distance and almost-sure asymptotic bounds for the connectivity threshold.
Resumo:
We present two online algorithms for maintaining a topological order of a directed n-vertex acyclic graph as arcs are added, and detecting a cycle when one is created. Our first algorithm handles m arc additions in O(m(3/2)) time. For sparse graphs (m/n = O(1)), this bound improves the best previous bound by a logarithmic factor, and is tight to within a constant factor among algorithms satisfying a natural locality property. Our second algorithm handles an arbitrary sequence of arc additions in O(n(5/2)) time. For sufficiently dense graphs, this bound improves the best previous bound by a polynomial factor. Our bound may be far from tight: we show that the algorithm can take Omega(n(2)2 root(2lgn)) time by relating its performance to a generalization of the k-levels problem of combinatorial geometry. A completely different algorithm running in Theta (n(2) log n) time was given recently by Bender, Fineman, and Gilbert. We extend both of our algorithms to the maintenance of strong components, without affecting the asymptotic time bounds.
Resumo:
Convergence of the vast sequence space of proteins into a highly restricted fold/conformational space suggests a simple yet unique underlying mechanism of protein folding that has been the subject of much debate in the last several decades. One of the major challenges related to the understanding of protein folding or in silico protein structure prediction is the discrimination of non-native structures/decoys from the native structure. Applications of knowledge-based potentials to attain this goal have been extensively reported in the literature. Also, scoring functions based on accessible surface area and amino acid neighbourhood considerations were used in discriminating the decoys from native structures. In this article, we have explored the potential of protein structure network (PSN) parameters to validate the native proteins against a large number of decoy structures generated by diverse methods. We are guided by two principles: (a) the PSNs capture the local properties from a global perspective and (b) inclusion of non-covalent interactions, at all-atom level, including the side-chain atoms, in the network construction accommodates the sequence dependent features. Several network parameters such as the size of the largest cluster, community size, clustering coefficient are evaluated and scored on the basis of the rank of the native structures and the Z-scores. The network analysis of decoy structures highlights the importance of the global properties contributing to the uniqueness of native structures. The analysis also exhibits that the network parameters can be used as metrics to identify the native structures and filter out non-native structures/decoys in a large number of data-sets; thus also has a potential to be used in the protein `structure prediction' problem.
Resumo:
N-doped monoclinic Ga2O3 nanostructures of different morphologies have been synthesized by heating Ga metal in ambient air at 1150 degrees C to 1350 degrees C for 1 to 5 h duration. Neither catalyst nor any gas flow has been used for the synthesis of N-doped Ga2O3 nanostructures. The morphology was controlled by monitoring the curvature of the Ga droplet. Plausible growth mechanisms are discussed to explain the different morphology of the nanostructures. Elemental mapping by electron energy loss spectroscopy of the nanostructures indicate uniform distribution of Ga, O and N. It is interesting to note that we have used neither nitride source nor any gas flow but the synthesis was carried out in ambient air. We believe that ambient nitrogen acts as the source of nitrogen. Unintentional nitrogen doping of the Ga2O3 nanostructures is a straightforward method and such nanostructures could be promising candidates for white light emission.
Resumo:
The factorization theorem for exclusive processes in perturbative QCD predicts the behavior of the pion electromagnetic form factor F(t) at asymptotic spacelike momenta t(= -Q(2)) < 0. We address the question of the onset energy using a suitable mathematical framework of analytic continuation, which uses as input the phase of the form factor below the first inelastic threshold, known with great precision through the Fermi-Watson theorem from pi pi elastic scattering, and the modulus measured from threshold up to 3 GeV by the BABAR Collaboration. The method leads to almost model-independent upper and lower bounds on the spacelike form factor. Further inclusion of the value of the charge radius and the experimental value at -2.45 GeV2 measured at JLab considerably increases the strength of the bounds in the region Q(2) less than or similar to 10 GeV2, excluding the onset of the asymptotic perturbative QCD regime for Q(2) < 7 GeV2. We also compare the bounds with available experimental data and with several theoretical models proposed for the low and intermediate spacelike region.
Resumo:
One of the metastable phases of vanadium dioxide, VO2(B) bundles of nanorods and microspheres have been synthesized through a simple hydrothermal method by dispersing V2O5 in aqueous quinol. The obtained products were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and electrochemical discharge-charge test for lithium battery. It was found that the morphologies of the obtained VO2(B) can be tuned by manipulating the relative amount of quinol. The electrochemical test found that the bundles of nanorods exhibit an initial discharge capacity of 171 mAh g(-1) and its almost stabilized capacity was reached to 108 mAh g(-1) after 47 cycles at a current density of 0.1 mA g(-1). The formation mechanism of the VO2(B) bundles of nanorods and microspheres was also discussed. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Diffuse optical tomography (DOT) is one of the ways to probe highly scattering media such as tissue using low-energy near infra-red light (NIR) to reconstruct a map of the optical property distribution. The interaction of the photons in biological tissue is a non-linear process and the phton transport through the tissue is modelled using diffusion theory. The inversion problem is often solved through iterative methods based on nonlinear optimization for the minimization of a data-model misfit function. The solution of the non-linear problem can be improved by modeling and optimizing the cost functional. The cost functional is f(x) = x(T)Ax - b(T)x + c and after minimization, the cost functional reduces to Ax = b. The spatial distribution of optical parameter can be obtained by solving the above equation iteratively for x. As the problem is non-linear, ill-posed and ill-conditioned, there will be an error or correction term for x at each iteration. A linearization strategy is proposed for the solution of the nonlinear ill-posed inverse problem by linear combination of system matrix and error in solution. By propagating the error (e) information (obtained from previous iteration) to the minimization function f(x), we can rewrite the minimization function as f(x; e) = (x + e)(T) A(x + e) - b(T)(x + e) + c. The revised cost functional is f(x; e) = f(x) + e(T)Ae. The self guided spatial weighted prior (e(T)Ae) error (e, error in estimating x) information along the principal nodes facilitates a well resolved dominant solution over the region of interest. The local minimization reduces the spreading of inclusion and removes the side lobes, thereby improving the contrast, localization and resolution of reconstructed image which has not been possible with conventional linear and regularization algorithm.
Resumo:
The synthesis and DNA photocleavage studies of furano3,2-c]-1,2,3,4-tetrahydroquinolines have been reported. Sm(III)nitrate was found to be an efficient for the Diels-Alder reaction of aryl amines with 2,3-dihydrofuran to offer the corresponding furano3,2-c]-1,2,3,4-tetrahydroquinolines derivatives as a mixture of cis/trans stereoisomers in moderate yields. The aqueous solubility of acid catalyst can be recycled without significant loss of activity. The DNA photocleavage studies shows that, the cis/trans stereoisomers are good DNA cleavage mimic in terms of molecular structure. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Since it is difficult to find the analytical solution of the governing Poisson equation for double gate MOSFETs with the body doping term included, the majority of the compact models are developed for undoped-body devices for which the analytical solution is available. Proposed is a simple technique to included a body doping term in such surface potential based common double gate MOSFET models also by taking into account any differences between the gate oxide thickness. The proposed technique is validated against TCAD simulation and found to be accurate as long as the channel is fully depleted.
Resumo:
In this paper, we report a synthesis, characterization and electrochemical properties of V2O5 nanobelts. V2O5 nanobelts have been prepared via hydrothermal treatment of commercial V2O5 in acidic (HCl/H2SO4) medium at relatively low temperature (160 degrees C). The hydrothermally derived products have been characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photo electron spectroscopy (XPS), UV-Vis spectroscopy, Scanning/Transmission electron microscopy (SEM/TEM). XRD pattern of V2O5 nanobelts show an orthorhombic phase. From the FTIR spectrum, the peak observed at 1018 cm-1 is characteristic of the stretching vibration mode of the terminal vanadyl, V = O. The UV-Vis absorption spectrum of V2O5 nanobelts show maximum absorbance at 430 nm, which was blue-shifted compared to that of bulk V2O5. TEM micrographs reveal that the products consist of nanobelts of 40-200 nm in thickness and several tens of micrometers in length. The electrochemical analysis shows an initial discharge capacity of 360 mAh g-1 and its almost stabilized capacity is reached to 250 mAh g-1 after 55 cycles. A probable reaction mechanism for the formation of orthorhombic V2O5 nanobelts is proposed.
Resumo:
This paper presents an investigation of the fluid flow in the fully developed portion of a rectangular channel (Aspect Ratio of 2) with dimples applied to one wall at channel Reynolds numbers of 20,000, 30,000, and 40,000. The dimples are applied in a staggered-row, racetrack configuration. Results for three different dimple geometries are presented: a large dimple, small dimple, and double dimple. Heat transfer and aerodynamic results from preceding works are presented in Nusselt number and friction factor augmentation plots as determined experimentally. Using particle image velocimetry, the region near the dimple feature is studied in detail in the location of the entrainment and ejection of vortical packets into and out of the dimple; the downstream wake region behind each dimple is also studied to examine the effects of the local flow phenomenon that result in improved heat transfer in the areas of the channel wall not occupied by a feature. The focus of the paper is to examine the secondary flows in these dimpled channels in order to support the previously presented heat transfer trends. The flow visualization is also intended to improve the understanding of the flow disturbances in a dimpled channel; a better understanding of these effects would lead the development of more effective channel cooling designs. Copyright © 2011 by ASME.
Resumo:
The rainbow connection number of a connected graph is the minimum number of colors needed to color its edges, so that every pair of its vertices is connected by at least one path in which no two edges are colored the same. In this article we show that for every connected graph on n vertices with minimum degree delta, the rainbow connection number is upper bounded by 3n/(delta + 1) + 3. This solves an open problem from Schiermeyer (Combinatorial Algorithms, Springer, Berlin/Hiedelberg, 2009, pp. 432437), improving the previously best known bound of 20n/delta (J Graph Theory 63 (2010), 185191). This bound is tight up to additive factors by a construction mentioned in Caro et al. (Electr J Combin 15(R57) (2008), 1). As an intermediate step we obtain an upper bound of 3n/(delta + 1) - 2 on the size of a connected two-step dominating set in a connected graph of order n and minimum degree d. This bound is tight up to an additive constant of 2. This result may be of independent interest. We also show that for every connected graph G with minimum degree at least 2, the rainbow connection number, rc(G), is upper bounded by Gc(G) + 2, where Gc(G) is the connected domination number of G. Bounds of the form diameter(G)?rc(G)?diameter(G) + c, 1?c?4, for many special graph classes follow as easy corollaries from this result. This includes interval graphs, asteroidal triple-free graphs, circular arc graphs, threshold graphs, and chain graphs all with minimum degree delta at least 2 and connected. We also show that every bridge-less chordal graph G has rc(G)?3.radius(G). In most of these cases, we also demonstrate the tightness of the bounds.
Resumo:
The host-guest chemistry of most inorganic layered solids is limited to ion-exchange reactions. The guest species are either cations or anions to compensate for the charge deficit, either positive or negative, of the inorganic layers. Here, we outline a strategy to include neutral molecules like ortho- and para-chloranil, that are known to be good acceptors in donor-acceptor or charge-transfer complexes, within the galleries of a layered solid. We have succeeded in including neutral ortho- and para-chloranil molecules within the galleries of an Mg-Al layered double hydroxide (LDH) by using charge-transfer interactions with preintercalated p-aminobenzoate ions as the driving force. The p-aminobenzoate ions are introduced in the Mg-Al LDH via ion exchange. The intercalated LDH can adsorb ortho- and para-chloranil from chloroform solutions by forming charge-transfer complexes with the p-aminobenzoate anions present in the galleries. We use X-ray diffraction, spectroscopy, and molecular dynamics simulations to establish the nature of interactions and arrangement of the charge-transfer complex within the galleries of the layered double hydroxide.
Resumo:
The reaction of a tridentate Schiff base ligand HL (2-(3-dimethylaminopropylimino)-methyl]-phenol) with Ni(II) acetate or perchlorate salts in the presence of azide as coligand has led to two new Ni(II) complexes of formulas Ni3L2(OAc)(2)(mu(1,1)-N-3)(2)(H2O)(2)]center dot 2H(2)O (1) and Ni2L2(mu(1,1)-N-3) (mu(1,3)-N-3)](n)(2). Single crystal X-ray structures show that complex 1 is a linear trinuclear Ni(II) compound containing a mu(2)-phenwddo, an end-on (EO) azido and a syn-syn acetato bridge between the terminal and the central Ni(II) ions. Complex 2 can be viewed as a one-dimensional (1D) chain in which the triply bridged (di-mu(2)-phenoxido and EO azido) dimeric Ni-2 units are linked to each other in a zigzag pattern by a single end-to-end (EE) azido bridge. Variable-temperature magnetic susceptibility studies indicate the presence of moderate ferromagnetic exchange coupling in complex 1 with J value of 16.51(6) cm(-1). The magnetic behavior of 2 can be fitted in an alternating ferro- and antiferromagnetic model J(FM) = +34.2(2.8) cm(-1) and J(AF) = -21.6(1.1) cm(-1)] corresponding to the triple bridged dinuclear core and EE azido bridge respectively. Density functional theory (DFT) calculations were performed to corroborate the magnetic results of 1 and 2. The contributions of the different bridges toward magnetic interactions in both compounds have also been calculated.