877 resultados para Offshore structures.
Resumo:
The potential changes to the territory of the Russian Arctic open up unique possibilities for the development of tourism. More favourable transport opportunities along the Northern Sea Route (NSR) create opportunities for tourism development based on the utilisation of the extensive areas of sea shores and river basins. A major challenge for the Russian Arctic sea and river ports is their strong cargo transport orientation originated by natural resource extraction industries. A careful assessment of the prospects of current and future tourism development is presented here based on the development of regions located along the shores of the Arctic ocean (including Murmansk and Arkhangelsk oblast, Nenets Autonomous okrug (AO), Yamal-Nenets AO, Taymyr AO, Republic of Sakha, Chykotsky AO). An evaluation of the present development of tourism in maritime cities suggests that a considerable qualitative and quantitative increase of tourism activities organised by domestic tourism firms is made virtually impossible. There are several factors contributing to this. The previously established Soviet system of state support for the investments into the port facilities as well as the sea fleet were not effectively replaced by creation of new structures. The necessary investments for reconstruction could be contributed by the federal government but the priorities are not set towards the increased passenger transportation. Having in mind, increased environmental pressures in this highly sensitive area it is especially vital to establish a well-functioning monitoring and rescue system in the situation of ever increasing risks which come not only from the increased transports along the NSR, but also from the exploitation of the offshore oil and gas reserves in the Arctic seas. The capacity and knowledge established in Nordic countries (Norway, Finland) concerning cruise tourism should not be underestimated and the already functioning cooperation in Barents Region should expand towards this particular segment of the tourism industry. The current stage of economic development in Russia makes it clear that tourism development is not able to compete with the well-needed increase in the cargo transportation, which means that Russia’s fleet is going to be utilised by other industries. However, opening up this area to both local and international visitors could contribute to the economic prosperity of these remote areas and if carefully managed could sustain already existing maritime cities along the shores of the Arctic Ocean.
Resumo:
In this paper the behavior of matter waves in suddenly terminated potential structures is investigated numerically. It is shown that there is no difference between a fully quantum mechanical treatment and a semiclassical one with regards to energy redistribution. For the quantum case it is demonstrated that there can be substantial reflection at the termination. The neglect of backscattering by the semiclassical method brings about major differences in the case of low kinetic energies. A simple phenomenological model is shown to partially explain the observed backscattering using dynamics of reduced dimensionality.
Resumo:
In this work the adiabatic approximation is applied to the propagation of matter waves in confined geometries like those experimentally realized in recent atom optical experiments. Adiabatic propagation along a channel is assumed not to mix the various transverse modes. Nonadiabatic corrections arise from the potential squeezing and bending. Here we investigate the effect of the former. Detailed calculations of two-dimensional propagation are carried out both exactly and in an adiabatic approximation. This offers the possibility to analyze the validity of adiabaticity criteria. A semiclassical (sc) approach, based on the sc Massey parameter is shown to be inadequate, and the diffraction due to wave effects must be included separately. This brings in the Fresnel parameter well known from optical systems. Using these two parameters, we have an adequate understanding of adiabaticity on the system analyzed. Thus quantum adiabaticity must also take cognizance of the intrinsic diffraction of matter waves.
Resumo:
http://digitalcommons.colby.edu/atlasofmaine2005/1015/thumbnail.jpg