877 resultados para Offshore oil and gas leases
Resumo:
Report for 1881-82 issued as the survey's monograph 1.
Resumo:
Report year irregular.
Resumo:
Continued In Its Summary of Operations
Resumo:
The current annual arisings of used car/van tyres in the U.K. has been found to be around 25m (188,000 tonnes). After the established reuse industries have taken their requirements this leaves 13.5m (102,000 tonnes) waste tyres; a quantity that can no longer be satisfactorily tipped. Laboratory scale experiments have shown that tyre can be pyrolised, using a molten carbonate system as the reaction medium, at rates corresponding to 14.9-42.7 g tyre/min. per litre of melt over the range 475 and 650°C. The product yields by weight of tyre input between the same temperatures are: hydrocarbon oil 23-36 wt. %, hydrocarbon gas 7- 18 wt. %, carbonaceous char 35-40 wt. %, steel 16.7 wt. % and inorganics 5.4 wt. %. The oil and gas evolve from the reactor and can easily be collected by conventional means. The steel and inorganics remain in the reactor although on the commercial scale it is proposed that they would be removed by physical and chemical methods respectively. The char was found to pose considerable handling problems and so a method was devised by which it could be gasified in the reactor. This was best achieved by passing air at a less than stoichiometric rate which gave a gaseous product rich in carbon monoxide. In addition this action provides heat for the system as a whole. The rates at 675-9000C were in the range corresponding to 5.6- 14.89 char/min. per litre of melt. A process flow chart has been proposed for a continuous operation based on these systems. Data from theoretical and experimental studies has enabled economic evaluations of several commercial scales to be carried out. These have shown that 4,000 and 10,000 t/yr operations show a DCF rate of return around 30% while a 50,000 t/yr operation shows 60% which would be attractive to an experienced scrap operator.
Resumo:
Ruta Aidis, Julia Korosteleva and Tomasz Mickiewicz 1. Introduction to Russia Russia is the world’s largest country, a nuclear superpower with unsurpassed energy resources. It is also a country which finds itself at the crossroads of possible development paths. Market-oriented mechanisms have been introduced but Soviet era laws remain on the books. Corruption has become a way of life and freedom of the press has been gradually eliminated in the early 2000s. Within this backdrop, private entrepreneurship has emerged, albeit in a distorted way. As the heart of the Soviet empire, Russia had tremendous control of enormous amounts of natural resources and human capital. Yet, 20 years ago, in the late 1980s, it was a country where entrepreneurship was marginal, the economy was stagnant and the ruling communist hierarchy had no clear formula for solving the deepening crisis. Unfortunately the reforms characterizing Russia’s attempts at rebuilding statehood after the collapse of the Soviet Union in the 1990s, first under Mikhail Gorbachev and then Boris Y’eltsin, were inconsistent and did not foster macroeconomic stabilization. However, since 2000, under Vladimir Putin’s leadership, macroeconomic stabilization as well as institutional stability has been achieved. In addition, an unprecedented increase in the price and demand for oil and gas resources has resulted in a rapid growth of Russia’s gross domestic product (GDP). Russia now has a large private sector, though not without its limitations. At first glance, ‘de jure’ regulations often seem reasonable, yet it is the selective and arbitrary manner by which they are...
Resumo:
The existing method of pipeline monitoring, which requires an entire pipeline to be inspected periodically, wastes time and is expensive. A risk-based model that reduces the amount of time spent on inspection has been developed. This model not only reduces the cost of maintaining petroleum pipelines, but also suggests an efficient design and operation philosophy, construction method and logical insurance plans.The risk-based model uses analytic hierarchy process, a multiple attribute decision-making technique, to identify factors that influence failure on specific segments and analyze their effects by determining the probabilities of risk factors. The severity of failure is determined through consequence analysis, which establishes the effect of a failure in terms of cost caused by each risk factor and determines the cumulative effect of failure through probability analysis.