988 resultados para Ocean Island Basalts
Resumo:
Basalts collected during drilling and diving programs on Serocki Volcano mostly fall within a limited compositional range, and are moderately evolved, normal MORBs with distinctive high MgO contents (averaging 7.60 wt%) and high A1203 concentrations (averaging 16.14 wt% in whole rock samples). However, samples recovered from within the central crater have lower Ti02 and FeO*/MgO, and higher MgO and Al2O3 concentrations, and are most similar to glasses recovered at Site 649 about 45 km to the north. Comparison of the observed geochemical variations with low-pressure experimental work and other samples from the region suggests that the Serocki Volcano and Site 649 data are compatible with crystal-liquid fractionation involving both olivine and early-stage clinopyroxene, as well as plagioclase, and that the sources may be similar even though Sites 648 and 649 are located in different, but adjacent, spreading cells. Consideration of the stratigraphy and morphology of Serocki Volcano suggests that this feature is more properly described as a megatumulus or lava delta, associated with a steeper, conical peak to the southwest. The evolution of Serocki Volcano involved early construction of a marginal rampart of pillows, followed by doming of this feature and the formation of a perched lava pond. Draining of this pond resulted in collapse and the formation of the central crater.
Resumo:
The effect of oxygen fugacity (fO2) on the partition relationship of Mg and Fe between Plagioclase and sillicate liquid was investigated at 1 atm for basaltic samples recovered during ODP Leg 111 from Hole 504B. Samples 111-504B-143R-2 (Piece 8) and 111-504B-169R-1 (Piece 1) have Plagioclase as the liquidus phase. The distribution coefficient of Mg between Plagioclase and melt is constant at about 0.04 against the variation of fO2, whereas that of Fe (total Fe) varies from 0.3 at f(O2) = 0.2 atm to 0.03 at f(o2) = 10**-11.5 at 1200°C. The distribution coefficient of Mg is slightly higher than that calculated from the phenocryst and bulk-rock compositions, suggesting a kinetic disequilibrium effect on the distribution of Mg in Plagioclase. Because Mg, Fe, and Fe3+ have similar diffusion coefficients in silicate melt, the disequilibrium effect is greatly reduced for the exchange reaction of Mg and total Fe between Plagioclase and liquid. The exchange partition coefficient is highly dependent on fo2, with log fo2 ranging from -0.7 to - 11.5 at approximately 1200°C. Using this relationship, the f(O2) of crystallization of the magmas is estimated to be near the one defined by the fayalite-quartz-magnetite assemblage.