982 resultados para Ocean County (N.J.)--Maps.
Resumo:
C band RADARSAT-2 fully polarimetric (fine quad-polarization mode, HH+VV+HV+VH) synthetic aperture radar (SAR) images are used to validate ocean surface waves measurements using the polarimetric SAR wave retrieval algorithm, without estimating the complex hydrodynamic modulation transfer function, even under large radar incidence angles. The linearly polarized radar backscatter cross sections (RBCS) are first calculated with the copolarization (HH, VV) and cross-polarization (HV, VH) RBCS and the polarization orientation angle. Subsequently, in the azimuth direction, the vertically and linearly polarized RBCS are used to measure the wave slopes. In the range direction, we combine horizontally and vertically polarized RBCS to estimate wave slopes. Taken together, wave slope spectra can be derived using estimated wave slopes in azimuth and range directions. Wave parameters extracted from the resultant wave slope spectra are validated with colocated National Data Buoy Center (NDBC) buoy measurements (wave periods, wavelengths, wave directions, and significant wave heights) and are shown to be in good agreement.
Resumo:
Because of the intrinsic difficulty in determining distributions for wave periods, previous studies on wave period distribution models have not taken nonlinearity into account and have not performed well in terms of describing and statistically analyzing the probability density distribution of ocean waves. In this study, a statistical model of random waves is developed using Stokes wave theory of water wave dynamics. In addition, a new nonlinear probability distribution function for the wave period is presented with the parameters of spectral density width and nonlinear wave steepness, which is more reasonable as a physical mechanism. The magnitude of wave steepness determines the intensity of the nonlinear effect, while the spectral width only changes the energy distribution. The wave steepness is found to be an important parameter in terms of not only dynamics but also statistics. The value of wave steepness reflects the degree that the wave period distribution skews from the Cauchy distribution, and it also describes the variation in the distribution function, which resembles that of the wave surface elevation distribution and wave height distribution. We found that the distribution curves skew leftward and upward as the wave steepness increases. The wave period observations for the SZFII-1 buoy, made off the coast of Weihai (37A degrees 27.6' N, 122A degrees 15.1' E), China, are used to verify the new distribution. The coefficient of the correlation between the new distribution and the buoy data at different spectral widths (nu=0.3-0.5) is within the range of 0.968 6 to 0.991 7. In addition, the Longuet-Higgins (1975) and Sun (1988) distributions and the new distribution presented in this work are compared. The validations and comparisons indicate that the new nonlinear probability density distribution fits the buoy measurements better than the Longuet-Higgins and Sun distributions do. We believe that adoption of the new wave period distribution would improve traditional statistical wave theory.
Resumo:
In considering the vertical heat transport problems in the upper ocean, the flat upper boundary approximation for the free surface and the horizontal homogenous hypothesis are usually applied. However, due to the existence of the wave motion, the application of this approximation may result in some errors to the solar irradiation since it decays quickly in respect to the actual thickness of the water layer below the surface; on the other hand, due to the fluctuation of the water layer depth, it is improper to neglect the effects of the horizontal advection and turbulent diffusion since they also contribute to the vertical heat transport. A new model is constructed in this study to reflect these effects. The corresponding numerical simulations show that the wave motion may remarkably accelerate the vertical heat transferring process and the variation of the temperature in the wave affected layer appears in an oscillating manner.
Resumo:
In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2(1972) 225; J. Geophys. REs. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed.
Resumo:
The interannual anomalies of horizontal heat advection in the surface mixed layer over the equatorial Pacific Ocean in an assimilation experiment are studied and compared with existing observational analyses. The assimilation builds upon a hindcast study that has produced a good simulation of the observed equatorial currents and optimizes the simulation of the Reynolds sea surface temperature (SST) data. The comparison suggests that the assimilation has improved the simulation of the interannual horizontal heat advection of the surface mixed layer significantly. During periods of interrupted current measurements, the assimilation is shown to produce more meaningful anomalies of the heat advection than the interpolation of the observational data does. The assimilation also shows that the eddy heat flux due to the correlation between high-frequency current and SST variations, which is largely overlooked by the existing observational analyses, is important for the interannual SST balance over the equatorial Pacific. The interannual horizontal heat advection anomalies are found to be sensitive to SST errors where oceanic currents are strong, which is a challenge for ENSO prediction. The study further suggests that the observational analyses of the tropical SST balance based on the TAO and the Reynolds SST data contain significant errors due to the large gradient errors in the Reynolds SST data, which are amplified into the advection anomalies by the large equatorial currents.
Resumo:
Based on the monthly average SST and 850 hPa monthly average wind data, the seasonal, interannual and long-term variations in the eastern Indian Ocean warm pool (EIWP) and its relationship to the Indian Ocean Dipole (IOD), and its response to the wind over the Indian Ocean are analyzed in this study. The results show that the distribution range, boundary and area of the EIWP exhibited obviously seasonal and interannual variations associated with the ENSO cycles. Further analysis suggests that the EIWP had obvious long-term trend in its bound edge and area, which indicated the EIWP migrated westwards by about 14 longitudes for its west edge, southwards by about 5 latitudes for its south edge and increased by 3.52x10(6) km(2) for its area, respectively, from 1950 to 2002. The correlation and composite analyses show that the anomalous westward and northward displacements of the EIWP caused by the easterly wind anomaly and the southerly wind anomaly over the eastern equatorial Indian Ocean played an important and direct role in the formation of the IOD.
Resumo:
To study how the air and sea interact with each other during El Nino/La Nina onsets, extended associate pattern analysis (EAPA) is adopted with the simple ocean data assimilation (SODA) data. The results show that as El Nino/La Nina's parents their behaviors are quite different, there does not exist a relatively independent tropical atmosphere but does exist a relatively independent tropical Pacific Ocean because the air is heated from the bottom surface instead of the top surface and of much stronger baroclinic instability than the sea and has a very large inter-tropical convergence zone covering the most tropical Pacific Ocean. The idea that it is the wester burst and wind convergence, coming from middle latitudes directly that produce the seawater eastward movement and meridional convergence in the upper levels and result in the typical El Nino sea surface temperature warm signal is confirmed again.
Resumo:
The one-dimensional Kraus-Turner mixed layer model improved by Liu is developed to consider the effect of salinity and the equations of temperature and salinity under the mixed layer. On this basis, the processes of growth and death of surface layer temperature inversion is numerically simulated under different environmental parameters. At the same time, the physical mechanism is preliminarily discussed combining the observations at the station of TOGA-COARE 0 degrees N, 156 degrees E. The results indicate that temperature inversion sensitively depends on the mixed layer depth, sea surface wind speed and solar shortwave radiation, etc., and appropriately meteorological and hydrological conditions often lead to the similarly periodical occurrence of this inversion phenomenon.
Resumo:
A one-dimensional mixed-layer model, including a Mellor-Yamada level 2.5 turbulence closure scheme, was implemented to investigate the dynamical and thermal structures of the ocean surface mixed layer in the northern South China Sea. The turbulent kinetic energy released through wave breaking was incorporated into the model as a source of energy at the ocean surface, and the influence of the breaking waves on the mixed layer was studied. The numerical simulations show that the simulated SST is overestimated in summer without the breaking waves. However, the cooler SST is simulated when the effect of the breaking waves is considered, the corresponding discrepancy with the observed data decreases up to 20% and the MLD calculated averagely deepens 3.8 m. Owing to the wave-enhanced turbulence mixing in the summertime, the stratification at the bottom of the mixed layer was modified and the temperature gradient spread throughout the whole thermocline compared with the concentrated distribution without wave breaking.
Resumo:
In this paper, the analytical representations of four wave source functions in high-frequency spectrum range are given on the basis of ocean wave theory and dimensional analysis, and the perturbation method is used to solve the governing equations of ocean wave high-frequency spectrum on the basis of the temporally stationary and locally homogeneous scale relations of microscale wave. The microscale ocean wavenumber spectrum correct to the second order has an explicit structure, its first order part represents the equilibrium between different source functions, and its second order part represents the contribution of microscale wave propagation.
Resumo:
To investigate the interaction between the tropical Pacific and China seas a variable-grid global ocean circulation model with fine grid[(1/6)degrees] covering the area from 20degreesS to 50degreesN and from 99degrees to 150degreesE is developed. Numerical computation of the annually cyclic circulation fields is performed. The results of the annual mean zonal currents and deep to abyssal western boundary currents in the equatorial Pacific Ocean are reported. The North Equatorial Current,the North Equatorial Countercurrent, the South Equatorial Current and the Equatorial Undercurrent are fairly well simulated. The model well reproduces the northward flowing abyssal western boundary current. From the model results a lower deep western boundary current east of the Bismarck-Solomon-New Hebrides Island chain at depths around 2 000 in has been found. The model results also show that the currents in the equatorial Pacific Ocean have multi-layer structures both in zonal currents and western boundary currents, indicating that the global ocean overturning thermohaline circulation appears of multi-layer pattern.
Resumo:
Based on the second-order random wave solutions of water wave equations in finite water depth, statistical distributions of the depth- integrated local horizontal momentum components are derived by use of the characteristic function expansion method. The parameters involved in the distributions can be all determined by the water depth and the wave-number spectrum of ocean waves. As an illustrative example, a fully developed wind-generated sea is considered and the parameters are calculated for typical wind speeds and water depths by means of the Donelan and Pierson spectrum. The effects of nonlinearity and water depth on the distributions are also investigated.
Resumo:
The monthly and annual mean freshwater, heat and salt transport through the open boundaries of the South and East China Seas derived from a variable-grid global ocean circulation model is reported. The model has 1/6degrees resolution for the seas adjacent to China and 30 resolution for the global ocean. The model results are in fairly good agreement with the existing estimates based on measurements. The computation shows that the flows passing through the South China Sea contribute volume, heat and salt transport of 5.3 Sv, 0.57 PW and 184 Ggs(-1), respectively (about 1/4) to the Indonesian Throughflow, indicating that the South China Sea is an important pathway of the Pacific to Indian Ocean throughflow. The volume, heat and salt transport of the Kuroshio in the East China Sea is 25.6 Sv, 2.32 PW and 894 Ggs(-1), respectively. Less than 1/4 of this transport passes through the passage between Iriomote and Okinawa. The calculation of heat balance indicates that the South China Sea absorbs net heat flux from the sun and atmosphere with a rate of 0.08 PW, while the atmosphere gains net heat flux from the Baohai, Yellow and East China Seas with a rate of 0.05 PW.
Resumo:
We present a new nonlinear integral transform relating the ocean wave spectrum to the along-track interferometric synthetic aperture radar (AT-INSAR) image spectrum. The AT-INSAR, which is a synthetic aperture radar (SAR) employing two antennas displaced along the platform's flight direction, is considered to be a better instrument for imaging ocean waves than the SAR. This is because the AT-INSAR yields the phase spectrum and not only the amplitude spectrum as with the conventional SAR. While the SAR and AT-INSAR amplitude spectra depend strongly on the modulation of the normalized radar cross section (NRCS) by the long ocean waves, which is poorly known, the phase spectrum depends only weakly on this modulation. By measuring the phase difference between the signals received by both antennas, AT-INSAR measures the radial component of the orbital velocity associated with the ocean waves, which is related to the ocean wave height field by a well-known transfer function. The nonlinear integral transform derived in this paper differs from the one previously derived by Bao et al. [1999] by an additional term containing the derivative of the radial component of the orbital velocity associated with the long ocean waves. By carrying out numerical simulations, we show that, in general, this additional term cannot be neglected. Furthermore, we present two new quasi-linear approximations to the nonlinear integral transform relating the ocean wave spectrum to the AT-INSAR phase spectrum.