951 resultados para Objective visual acuity
Resumo:
Recent advances in energy technology generation and new directions in electricity regulation have made distributed generation (DG) more widespread, with consequent significant impacts on the operational characteristics of distribution networks. For this reason, new methods for identifying such impacts are needed, together with research and development of new tools and resources to maintain and facilitate continued expansion towards DG. This paper presents a study aimed at determining appropriate DG sites for distribution systems. The main considerations which determine DG sites are also presented, together with an account of the advantages gained from correct DG placement. The paper intends to define some quantitative and qualitative parameters evaluated by Digsilent (R), GARP3 (R) and DSA-GD software. A multi-objective approach based on the Bellman-Zadeh algorithm and fuzzy logic is used to determine appropriate DG sites. The study also aims to find acceptable DG locations both for distribution system feeders, as well as for nodes inside a given feeder. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The cost of a new ship design heavily depends on the principal dimensions of the ship; however, dimensions minimization often conflicts with the minimum oil outflow (in the event of an accidental spill). This study demonstrates one rational methodology for selecting the optimal dimensions and coefficients of form of tankers via the use of a genetic algorithm. Therein, a multi-objective optimization problem was formulated by using two objective attributes in the evaluation of each design, specifically, total cost and mean oil outflow. In addition, a procedure that can be used to balance the designs in terms of weight and useful space is proposed. A genetic algorithm was implemented to search for optimal design parameters and to identify the nondominated Pareto frontier. At the end of this study, three real ships are used as case studies. [DOI:10.1115/1.4002740]
Resumo:
SKAN: Skin Scanner - System for Skin Cancer Detection Using Adaptive Techniques - combines computer engineering concepts with areas like dermatology and oncology. Its objective is to discern images of skin cancer, specifically melanoma, from others that show only common spots or other types of skin diseases, using image recognition. This work makes use of the ABCDE visual rule, which is often used by dermatologists for melanoma identification, to define which characteristics are analyzed by the software. It then applies various algorithms and techniques, including an ellipse-fitting algorithm, to extract and measure these characteristics and decide whether the spot is a melanoma or not. The achieved results are presented with special focus on the adaptive decision-making and its effect on the diagnosis. Finally, other applications of the software and its algorithms are presented.
Resumo:
This paper analyzes the complexity-performance trade-off of several heuristic near-optimum multiuser detection (MuD) approaches applied to the uplink of synchronous single/multiple-input multiple-output multicarrier code division multiple access (S/MIMO MC-CDMA) systems. Genetic algorithm (GA), short term tabu search (STTS) and reactive tabu search (RTS), simulated annealing (SA), particle swarm optimization (PSO), and 1-opt local search (1-LS) heuristic multiuser detection algorithms (Heur-MuDs) are analyzed in details, using a single-objective antenna-diversity-aided optimization approach. Monte- Carlo simulations show that, after convergence, the performances reached by all near-optimum Heur-MuDs are similar. However, the computational complexities may differ substantially, depending on the system operation conditions. Their complexities are carefully analyzed in order to obtain a general complexity-performance framework comparison and to show that unitary Hamming distance search MuD (uH-ds) approaches (1-LS, SA, RTS and STTS) reach the best convergence rates, and among them, the 1-LS-MuD provides the best trade-off between implementation complexity and bit error rate (BER) performance.
Resumo:
Some motor tasks can be completed, quite literally, with our eyes shut. Most people can touch their nose without looking or reach for an object after only a brief glance at its location. This distinction leads to one of the defining questions of movement control: is information gleaned prior to starting the movement sufficient to complete the task (open loop), or is feedback about the progress of the movement required (closed loop)? One task that has commanded considerable interest in the literature over the years is that of steering a vehicle, in particular lane-correction and lane-changing tasks. Recent work has suggested that this type of task can proceed in a fundamentally open loop manner [1 and 2], with feedback mainly serving to correct minor, accumulating errors. This paper reevaluates the conclusions of these studies by conducting a new set of experiments in a driving simulator. We demonstrate that, in fact, drivers rely on regular visual feedback, even during the well-practiced steering task of lane changing. Without feedback, drivers fail to initiate the return phase of the maneuver, resulting in systematic errors in final heading. The results provide new insight into the control of vehicle heading, suggesting that drivers employ a simple policy of “turn and see,” with only limited understanding of the relationship between steering angle and vehicle heading.
Resumo:
We examined the influence of backrest inclination and vergence demand on the posture and gaze angle that-workers adopt to view visual targets placed in different vertical locations. In the study 12 participants viewed a small video monitor placed in 7 locations around a 0.65-m radius arc (from 650 below to 300 above horizontal eye height). Trunk posture was manipulated by changing the backrest inclination of an adjustable chair. Vergence demand was manipulated by using ophthalmic lenses and prisms to mimic the visual consequences of varying target distance. Changes in vertical target location caused large changes in atlantooccipital posture and gaze angle. Cervical posture was altered to a lesser extent by changes in vertical target location. Participants compensated for changes in backrest inclination by changing cervical posture, though they did not significantly alter atlanto-occipital posture and gaze angle. The posture adopted to view any target represents a compromise between visual and musculoskeletal demands. These results provide support for the argument that the optimal location of visual targets is at least 15 below horizontal eye level. Actual or potential applications of this work include the layout of computer workstations and the viewing of displays from a seated posture.
Resumo:
This paper reports on a qualitative field study conducted in Australia which examined what is occurring in formal performance appraisal interviews in relation to their objectivity and resultant outcomes. Supervisors and subordinates who had recently been involved in performance appraisals were interviewed about their experiences of the process. Perceptions of the utility of, and satisfaction with the interview process were examined. Further, the effect of the relationship between the participants on objectivity was investigated. Results indicated that formal appraisal interviews were not perceived to be of great utility, and that the relationship of the participants influenced the interview.
Resumo:
Extracting human postural information from video sequences has proved a difficult research question. The most successful approaches to date have been based on particle filtering, whereby the underlying probability distribution is approximated by a set of particles. The shape of the underlying observational probability distribution plays a significant role in determining the success, both accuracy and efficiency, of any visual tracker. In this paper we compare approaches used by other authors and present a cost path approach which is commonly used in image segmentation problems, however is currently not widely used in tracking applications.
Resumo:
A sophisticated style of mentoring has been found to be essential to support engineering student teams undertaking technically demanding, real-world problems as part of a Project-Centred Curriculum (PCC) at The University of Queensland. The term ‘triple-objective’ mentoring was coined to define mentoring that addresses not only the student’s technical goal achievement but also their time and team management. This is achieved through a number of formal mentor meetings that are informed by a confidential instrument which requires students to individually reflect on team processes prior to the meeting, and a checklist of technical requirements against which the interim student team progress and achievements are assessed. Triple-objective mentoring requires significant time input and coordination by the academic but has been shown to ensure effective student team work and learning undiminished by team dysfunction. Student feedback shows they value the process and agree that the tools developed to support the process are effective in developing and assessing team work and skills with average scores mostly above 3 on a four point scale.
Resumo:
It is known that some Virtual Reality (VR) head-mounted displays (HMDs) can cause temporary deficits in binocular vision. On the other hand, the precise mechanism by which visual stress occurs is unclear. This paper is concerned with a potential source of visual stress that has not been previously considered with regard to VR systems: inappropriate vertical gaze angle. As vertical gaze angle is raised or lowered the 'effort' required of the binocular system also changes. The extent to which changes in vertical gaze angle alter the demands placed upon the vergence eye movement system was explored. The results suggested that visual stress may depend, in part, on vertical gaze angle. The proximity of the display screens within an HMD means that a VR headset should be in the correct vertical location for any individual user. This factor may explain some previous empirical results and has important implications for headset design. Fortuitously, a reasonably simple solution exists.
Resumo:
Objective: There is increasing concern that the course of psychiatric disorders may be affected by parameters such as the duration and intensity of symptoms of initial episodes of illness. As this indicates that abnormal function produces long-term changes within the brain, a review of the neuroscience literature regarding neuroplasticity is warranted. Method: This article is a selective review, focusing in particular on results obtained from physiological experiments assessing plasticity within the mammalian neocortex. The possible relevance of results to psychiatry is discussed. Results: While the most dramatic examples of neuroplasticity occur during a critical period of neural development, neuroplasticity can also occur in adult neocortex. Neuroplasticity appears to be activity-dependent: synaptic pathways that are intensively used may become strengthened, and conversely, there may be depression of transmission in infrequently used pathways. Conclusions: Results from neurophysiological experiments fend support to the clinical observation that the intensity and duration of a psychiatric disorder may adversely alter its long-term course. Rapid aggressive treatment may prevent this from occurring. While pharmacotherapy may reduce the duration and severity of symptoms, it may also have an independent, as yet unknown, effect on neuroplasticity.
Resumo:
The deep-sea pearleye, Scopelarchus michaelsarsi (Scopelarchidae) is a mesopelagic teleost with asymmetric or tubular eyes. The main retina subtends a large dorsal binocular field, while the accessory retina subtends a restricted monocular field of lateral visual space. Ocular specializations to increase the lateral visual field include an oblique pupil and a corneal lens pad. A detailed morphological and topographic study of the photoreceptors and retinal ganglion cells reveals seven specializations: a centronasal region of the main retina with ungrouped rod-like photoreceptors overlying a retinal tapetum; a region of high ganglion cell density (area centralis of 56.1x10(3) cells per mm(2)) in the centrolateral region of the main retina; a centrotemporal region of the main retina with grouped rod-like photoreceptors; a region (area giganto cellularis) of large (32.2+/-5.6 mu m(2)), alpha-like ganglion cells arranged in a regular array (nearest neighbour distance 53.5+/-9.3 mu m with a conformity ratio of 5.8) in the temporal main retina; an accessory retina with grouped rod-like photoreceptors; a nasotemporal band of a mixture of rod-and cone-like photoreceptors restricted to the ventral accessory retina; and a retinal diverticulum comprised of a ventral region of differentiated accessory retina located medial to the optic nerve head. Retrograde labelling from the optic nerve with DiI shows that approximately 14% of the cells in the ganglion cell layer of the main retina are displaced amacrine cells at 1.5 mm eccentricity. Cryosectioning of the tubular eye confirms Matthiessen's ratio (2.59), and calculations of the spatial resolving power suggests that the function of the area centralis (7.4 cycles per degree/8.1 minutes of are) and the cohort of temporal alpha-like ganglion cells (0.85 cycles per degree/70.6 minutes of are) in the main retina may be different. Low summation ratios in these various retinal zones suggests that each zone may mediate distinct visual tasks in a certain region of the visual field by optimizing sensitivity and/or resolving power.
Resumo:
A dissociation between two putative measures of resource allocation skin conductance responding, and secondary task reaction time (RT), has been observed during auditory discrimination tasks. Four experiments investigated the time course of the dissociation effect with a visual discrimination task. participants were presented with circles and ellipses and instructed to count the number of longer-than-usual presentations of one shape (task-relevant) and to ignore presentations of the other shape (task-irrelevant). Concurrent with this task, participants made a speeded motor response to an auditory probe. Experiment 1 showed that skin conductance responses were larger during task-relevant stimuli than during task-irrelevant stimuli, whereas RT to probes presented at 150 ms following shape onset was slower during task-irrelevant stimuli. Experiments 2 to 4 found slower RT during task-irrelevant stimuli at probes presented at 300 ms before shape onset until 150 ms following shape onset. At probes presented 3,000 and 4,000 ms following shape onset probe RT was slower during task-relevant stimuli. The similarities between the observed time course and the so-called psychological refractory period (PRF) effect are discussed.
Resumo:
Deep-sea fish, defined as those living below 200 m, inhabit a most unusual photic environment, being exposed to two sources of visible radiation: very dim downwelling sunlight and bioluminescence, both of which are, in most cases. maximal at wavelengths around 450-500 nm. This paper summarises the reflective properties of the ocular tapeta often found in these animals the pigmentation of their lenses and the absorption characteristics of their visual pigments. Deepsea tapeta usually appear blue to the human observer. reflecting mainly shortwave radiation. However, reflection in other parts of the spectrum is not uncommon and uneven tapetal distribution across the retina is widespread. Perhaps surprisingly, given the fact that they live in a photon limited environment, the lenses of some deep-sea teleosts are bright yellow, absorbing much of the shortwave part of the spectrum. Such lenses contain a variety of biochemically distinct pigments which most likely serve to enhance the visibility of bioluminescent signals. Of the 195 different visual pigments characterised by either detergent extract or microspectrophotometry in the retinae of deep-sea fishes, cn. 87% have peak absorbances within the range 468-494 nm. Modelling shows that this is most likely an adaptation for the detection of bioluminescence. Around 13% of deep-sea fish have retinae containing more than one visual pigment. Of these, we highlight three genera of stomiid dragonfishes, which uniquely produce far red bioluminescence from suborbital photophores. Using a combination of longwave-shifted visual pigments and in one species (Malacosteus niger) a chlorophyll-related photosensitizer. these fish have evolved extreme red sensitivity enabling them to see their own bioluminescence and giving them a private spectral waveband invisible to other inhabitants of the deep-ocean. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Objective: The objectives were to determine the postural consequences of varying computer monitor height and to describe self-selected monitor heights and postures. Design: The design involved experimental manipulation of computer monitor height, description of self-selected heights, and measurement of posture and gaze angles. Background. Disagreement exists with regard to the appropriate height of computer monitors. It is known that users alter both head orientation and gaze angle in response to changes in monitor height; however the relative contribution of atlanto-occipital and cervical flexion to the change in head rotation is unknown. No information is available with regard to self-selected monitor heights. Methods. Twelve students performed a tracking task with the monitor placed at three different heights. The subjects then completed eight trials in which monitor height was first self-selected. Sagittal postural and gaze angle data were determined by digitizing markers defining a two-dimensional three-link model of the trunk, cervical spine and head. Results. The 27 degrees change in monitor height imposed was, on average, accommodated by 18 degrees of head inclination and a 9 degrees change in gaze angle relative to the head. The change in head inclination was achieved by a 6 degrees change in trunk inclination, a 4 degrees change in cervical flexion, and a 7 degrees change in atlanto-occipital flexion. The self-selected height varied depending on the initial monitor height and inclination. Conclusions. Self-selected monitor heights were lower than current 'eye-level' recommendations. Lower monitor heights are likely to reduce both visual and musculoskeletal discomfort. Relevance Musculoskeletal and visual discomfort may be reduced by placing computer monitors lower than currently recommended. (C) 1998 Elsevier Science Ltd. All rights reserved.