986 resultados para OXIDATION REACTION
Resumo:
Forest fire models have been widely studied from the context of self-organized criticality and from the ecological properties of the forest and combustion. On the other hand, reaction-diffusion equations have interesting applications in biology and physics. We propose here a model for fire propagation in a forest by using hyperbolic reaction-diffusion equations. The dynamical and thermodynamical aspects of the model are analyzed in detail
Resumo:
A kinetic model is derived to study the successive movements of particles, described by a Poisson process, as well as their generation. The irreversible thermodynamics of this system is also studied from the kinetic model. This makes it possible to evaluate the differences between thermodynamical quantities computed exactly and up to second-order. Such differences determine the range of validity of the second-order approximation to extended irreversible thermodynamics
Resumo:
A generalization of reaction-diffusion models to multigeneration biological species is presented. It is based on more complex random walks than those in previous approaches. The new model is developed analytically up to infinite order. Our predictions for the speed agree to experimental data for several butterfly species better than existing models. The predicted dependence for the speed on the number of generations per year allows us to explain the change in speed observed for a specific invasion
Resumo:
The front speed problem for nonuniform reaction rate and diffusion coefficient is studied by using singular perturbation analysis, the geometric approach of Hamilton-Jacobi dynamics, and the local speed approach. Exact and perturbed expressions for the front speed are obtained in the limit of large times. For linear and fractal heterogeneities, the analytic results have been compared with numerical results exhibiting a good agreement. Finally we reach a general expression for the speed of the front in the case of smooth and weak heterogeneities
Resumo:
We present an approach to determining the speed of wave-front solutions to reaction-transport processes. This method is more accurate than previous ones. This is explicitly shown for several cases of practical interest: (i) the anomalous diffusion reaction, (ii) reaction diffusion in an advective field, and (iii) time-delayed reaction diffusion. There is good agreement with the results of numerical simulations
Resumo:
The asymptotic speed problem of front solutions to hyperbolic reaction-diffusion (HRD) equations is studied in detail. We perform linear and variational analyses to obtain bounds for the speed. In contrast to what has been done in previous work, here we derive upper bounds in addition to lower ones in such a way that we can obtain improved bounds. For some functions it is possible to determine the speed without any uncertainty. This is also achieved for some systems of HRD (i.e., time-delayed Lotka-Volterra) equations that take into account the interaction among different species. An analytical analysis is performed for several systems of biological interest, and we find good agreement with the results of numerical simulations as well as with available observations for a system discussed recently
Resumo:
A time-delayed second-order approximation for the front speed in reaction-dispersion systems was obtained by Fort and Méndez [Phys. Rev. Lett. 82, 867 (1999)]. Here we show that taking proper care of the effect of the time delay on the reactive process yields a different evolution equation and, therefore, an alternate equation for the front speed. We apply the new equation to the Neolithic transition. For this application the new equation yields speeds about 10% slower than the previous one
Resumo:
Three novel members of the Xenopus nuclear hormone receptor superfamily have been cloned. They are related to each other and similar to the group of receptors that includes those for thyroid hormones, retinoids, and vitamin D3. Their transcriptional activity is regulated by agents causing peroxisome proliferation and carcinogenesis in rodent liver. All three Xenopus receptors activate the promoter of the acyl coenzyme A oxidase gene, which encodes the key enzyme of peroxisomal fatty acid beta-oxidation, via a cognate response element that has been identified. Therefore, peroxisome proliferators may exert their hypolipidemic effects through these receptors, which stimulate the peroxisomal degradation of fatty acids. Finally, the multiplicity of these receptors suggests the existence of hitherto unknown cellular signaling pathways for xenobiotics and putative endogenous ligands.
Resumo:
In a previous paper [J.Fort and V.Méndez, Phys. Rev. Lett. 82, 867 (1999)], the possible importance of higher-order terms in a human population wave of advance has been studied. However, only a few such terms were considered. Here we develop a theory including all higher-order terms. Results are in good agreement with the experimental evidence involving the expansion of agriculture in Europe
Resumo:
PURPOSE: Nonspecific inflammatory reactions characterized by local tenderness, fever, and flu-like discomfort have been seen in patients undergoing endoluminal graft placement in the abdominal aorta or the femoral arteries. We undertook a study to assess the clinical and laboratory parameters of this inflammation. METHODS: Ten patients with femoropopliteal artery (n = 9) or aortic (n = 1) lesions were treated with EndoPro System 1 stent-grafts made of nitinol alloy and covered with a polyester (Dacron) fabric. Eleven patients implanted with a bare nitinol stent served as the control group. RESULTS: In the stent-graft group, four patients showed clinical signs of acute inflammation manifested by fever and local tenderness. Three of these patients suffered thrombosis of the stent-grafts during the first month of follow-up. Plasma levels of interleukin-1 beta and interleukin-6 in all stent-graft patients were markedly increased 1 day after intervention (7.3 +/- 2.8 versus 90.2 +/- 34.1 pg/mL and 15.6 +/- 5.8 versus 175.5 +/- 66.3 pg/mL, respectively; p < 0.01). This was followed by an increase in fibrinogen (3.0 +/- 0.2 versus 5.0 +/- 0.2 g/L; p < 0.05) and C-reactive protein (14.6 +/- 3.3 versus 77.5 +/- 15.0 mg/L; p < 0.01) at 1 week. No direct correlation between the inflammatory markers and symptoms could be found. In vitro analysis showed that individual components of the stent-graft did not activate human neutrophils, whereas the intact stent-graft itself induced a marked neutrophil activation. CONCLUSIONS: The component of the self-expanding stent-graft responsible for the nonspecific inflammatory reaction was not identified in this study. It is likely that the stent-graft itself or some as yet unrecognized element of the device other than the Dacron fabric or metal alloy may be a potent in vivo inducer of cytokine reaction by neutrophils.
Resumo:
Transgenic plants producing peroxisomal polyhydroxy- alkanoate (PHA) from intermediates of fatty acid degradation were used to study carbon flow through the beta-oxidation cycle. Growth of transgenic plants in media containing fatty acids conjugated to Tween detergents resulted in an increased accumulation of PHA and incorporation into the polyester of monomers derived from the beta-oxidation of these fatty acids. Tween-laurate was a stronger inducer of beta-oxidation, as measured by acyl-CoA oxidase activity, and a more potent modulator of PHA quantity and monomer composition than Tween-oleate. Plants co-expressing a peroxisomal PHA synthase with a capryl-acyl carrier protein thioesterase from Cuphea lanceolata produced eightfold more PHA compared to plants expressing only the PHA synthase. PHA produced in double transgenic plants contained mainly saturated monomers ranging from 6 to 10 carbons, indicating an enhanced flow of capric acid towards beta-oxidation. Together, these results support the hypothesis that plant cells have mechanisms which sense levels of free or esterified unusual fatty acids, resulting in changes in the activity of the beta-oxidation cycle as well as removal and degradation of these unusual fatty acids through beta-oxidation. Such enhanced flow of fatty acids through beta-oxidation can be utilized to modulate the amount and composition of PHA produced in transgenic plants. Furthermore, synthesis of PHAs in plants can be used as a new tool to study the quality and relative quantity of the carbon flow through beta-oxidation as well as to analyse the degradation pathway of unusual fatty acids.
Resumo:
The fungus Aspergillus nidulans contains both a mitochondrial and peroxisomal ß-oxidation pathway. This work was aimed at studying the influence of mutations in the foxA gene, encoding a peroxisomal multifunctional protein, or in the scdA/echA genes, encoding a mitochondrial short-chain dehydrogenase and an enoyl-CoA hydratase, respectively, on the carbon flux to the peroxisomal ß-oxidation pathway. A. nidulans transformed with a peroxisomal polyhydroxyalkanoate (PHA) synthase produced PHA from the polymerization of 3-hydroxyacyl-CoA intermediates derived from the peroxisomal ß-oxidation of external fatty acids. PHA produced from erucic acid or heptadecanoic acid contained a broad spectrum of monomers, ranging from 5 to 14 carbons, revealing that the peroxisomal ß-oxidation cycle can handle both long and short-chain intermediates. While the ∆foxA mutant grown on erucic acid or oleic acid synthesized 10-fold less PHA compared to wild type, the same mutant grown on octanoic acid or heptanoic acid produced 3- to 6-fold more PHA. Thus, while FoxA has an important contribution to the degradation of long-chain fatty acids, the flux of short-chain fatty acids to peroxisomal ß-oxidation is actually enhanced in its absence. While no change in PHA was observed in the ∆scdA∆echA mutant grown on erucic acid or oleic acid compared to wild type, there was a 2- to 4-fold increased synthesis of PHA in ∆scdA∆echA cells grown in octanoic acid or heptanoic acid. These results reveal that a compensatory mechanism exists in A. nidulans that increases the flux of short-chain fatty acids towards the peroxisomal ß-oxidation cycle when the mitochondrial ß-oxidation pathway is defective.
Resumo:
Short-chain-length-medium-chain-length polyhydroxyalkanoates were synthesized in Saccharomyces cerevisiae from intermediates of the beta-oxidation cycle by expressing the polyhydroxyalkanoate synthases from Aeromonas caviae and Ralstonia eutropha in the peroxisomes. The quantity of polymer produced was increased by using a mutant of the beta-oxidation-associated multifunctional enzyme with low dehydrogenase activity toward R-3-hydroxybutyryl coenzyme A.
Resumo:
Great effort is put into developing reliable, predictive, high-throughput, and low-cost screening approaches for the toxicity evaluation of ambient and manufactured nanoparticles (NP). These tests often consider oxidative reactivity, as oxidative stress is a well-documented pathway in particle toxicology. Based on a panel of six carbonaceous and five metal/metal oxide (Me/MeOx) nanoparticles, we: (i) compared the specifications (linearity, detection limits, repeatability) of three acellular reactivity tests using either dithiothreitol (DTT assay), dichlorofluorescein (DCFH assay), or ascorbic acid (AA-assay) as the reducing agent; and (ii) evaluated which physicochemical properties were important for explaining the observed reactivity. The selected AA assay was found to be neither sensitive nor robust enough to be retained. For the other tests, the surface properties of carbonaceous NP were of utmost importance for explaining their reactivity. In particular, the presence of "strongly reducing" surface functions explained most of its DCFH reactivity and a large part of its DTT reactivity. For the selected Me/MeOx, a different picture emerged. Whereas all particles were able to oxidize DCFH, dissolution and complexation processes could additionally influence the measured reactivity, as observed using the DTT assay. This study suggests that a combination of the DTT and DCFH assays provides complementary information relative to the quantification of the oxidative capacity of NP.
Resumo:
Dietary obesity is a major factor in the development of type 2 diabetes and is associated with intra-adipose tissue hypoxia and activation of hypoxia-inducible factor 1α (HIF1α). Here we report that, in mice, Hif1α activation in visceral white adipocytes is critical to maintain dietary obesity and associated pathologies, including glucose intolerance, insulin resistance, and cardiomyopathy. This function of Hif1α is linked to its capacity to suppress β-oxidation, in part, through transcriptional repression of sirtuin 2 (Sirt2) NAD(+)-dependent deacetylase. Reduced Sirt2 function directly translates into diminished deacetylation of PPARγ coactivator 1α (Pgc1α) and expression of β-oxidation and mitochondrial genes. Importantly, visceral adipose tissue from human obese subjects is characterized by high levels of HIF1α and low levels of SIRT2. Thus, by negatively regulating the Sirt2-Pgc1α regulatory axis, Hif1α negates adipocyte-intrinsic pathways of fatty acid catabolism, thereby creating a metabolic state supporting the development of obesity.