991 resultados para Nutrient pollution of water.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. During the fermentation of water-logged soil containing added substances with different carbon-nitrogen ratios, the reaction first turns slightly acid, but soon returns to the original hydrogen-ion concentration (pH 7·6). 2. The quantities of ammonia present in the medium increase up to a point, after which there is steady decrease. 3. There is nitrification only in the case of substances with narrow C/N ratios. The production of nitrate generally commences only after about a month, when the vigour of the initial fermentation has subsided and fairly large quantities of ammonia have accumulated in the medium. 4. The extent of mineralisation of nitrogen is determined chiefly by the C/N ratio, though in the cases of substances like mahua and lantana the presence of other constituents may also influence the processes. The quantities of mineralised nitrogen present in the soil system generally tend to decrease after about two months.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fully atomistic molecular dynamics simulations have been carried out to investigate the correlation of biological activity with dynamics of water molecules in an aqueous protein solution of the toxic domain of enterotoxin (PDB ID: 1ETN). This is a small protein of 13 amino acid residues. Our study of this water soluble protein clearly reveals that water dynamics slows down in the hydration layer. Despite this general slowing down, water molecules in the vicinity of the second beta turn of this protein exhibit faster dynamics than those near other regions of the protein. Since this beta turn is believed to play a critical role in the receptor binding of this protein, the faster dynamics of water near the beta turn m ay have biological significance. The collective orientational dynamics of the water molecules in the protein solution exhibits a characteristic long time component of 27 ps, which agrees well with dielectric relaxation experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We conducted surveys of fire and fuels managers at local, regional, and national levels to gain insights into decision processes and information flows in wildfire management. Survey results in the form of fire managers’ decision calendars show how climate information needs vary seasonally, over space, and through the organizational network, and help determine optimal points for introducing climate information and forecasts into decision processes. We identified opportunities to use climate information in fire management, including seasonal to interannual climate forecasts at all organizational levels, to improve the targeting of fuels treatments and prescribed burns, the positioning and movement of initial attack resources, and staffing and budgeting decisions. Longer-term (5–10 years) outlooks also could be useful at the national level in setting budget and research priorities. We discuss these opportunities and examine the kinds of organizational changes that could facilitate effective use of existing climate information and climate forecast capabilities.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquid water is known to exhibit remarkable thermodynamic and dynamic anomalies, ranging from solvation properties in supercritical state to an apparent divergence of the linear response functions at a low temperature. Anomalies in various dynamic properties of water have also been observed in the hydration layer of proteins, DNA grooves and inside the nanocavity, such as reverse micelles and nanotubes. Here we report studies on the molecular origin of these anomalies in supercooled water, in the grooves of DNA double helix and reverse micelles. The anomalies have been discussed in terms of growing correlation length and intermittent population fluctuation of 4- and 5-coordinated species. We establish correlation between thermodynamic response functions and mean squared species number fluctuation. Lifetime analysis of 4- and 5-coordinated species reveals interesting differences between the role of the two species in supercooled and constrained water. The nature and manifestations of the apparent and much discussed liquid-liquid transition under confinement are found to be markedly different from that in the bulk. We find an interesting `faster than bulk' relaxation in reverse micelles which we attribute to frustration effects created by competition between the correlations imposed by surface interactions and that imposed by hydrogen bond network of water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scattering of water waves by a sphere in a two-layer fluid, where the upper layer has an ice-cover modelled as an elastic plate of very small thickness, while the lower one has a rigid horizontal bottom surface, is investigated within the framework of linearized water wave theory. The effects of surface tension at the surface of separation is neglected. There exist two modes of time-harmonic waves - the one with lower wave number propagating along the ice-cover and the one with higher wave number along the interface. Method of multipole expansions is used to find the particular solution for the problem of wave scattering by a submerged sphere placed in either of the layers. The exciting forces for vertical and horizontal directions are derived and plotted against different values of the wave number for different submersion depths of the sphere and flexural rigidity of the ice-cover. When the flexural rigidity and the density of the ice-cover are taken to be zero, the numerical results for the exciting forces for the problem with free surface are recovered as particular cases. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The GasBench II peripheral along with MAT 253 combination provides a more sensitive platform for the determination of water isotope ratios. Here, we examined the role of adsorbed moisture within the gas chromatography (GC) column of the GasBench II on measurement uncertainties. The uncertainty in O-18/O-16 ratio measurements is determined by several factors, including the presence of water in the GC. The contamination of GC with water originating from samples as water vapour over a longer timeframe is a critical factor in determining the reproducibility of O-18/O-16 ratios in water samples. The shift in isotope ratios observed in the experiment under dry and wet conditions correlates strongly with the retention time of analyte CO2, indicating the effect of accumulated moisture. Two possible methods to circumvent or minimise the effect of adsorbed water on isotope ratios are presented here. The proposed methodology includes either the regular baking of the GC column at a higher temperature (120 degrees C) after analysis of a batch of 32 sample entries or conducting the experiment at a low GC column temperature (22.5 degrees C). The effects of water contamination on long-term reproducibility of reference water, with and without baking protocol, have been described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Free energy barriers separating interfacial water molecules from the hydration layer at the surface of a protein to the bulk are obtained by using the umbrella sampling method of free energy calculation. We consider hydration layer of chicken villin head piece (HP-36) which has been studied extensively by molecular dynamics simulations. The free energy calculations reveal a strong sensitivity to the secondary structure. In particular, we find a region near the junction of first and second helix that contains a cluster of water molecules which are slow in motion, characterized by long residence times (of the order of 100 ps or more) and separated by a large free energy barrier from the bulk water. However, these ``slow'' water molecules constitute only about 5-10% of the total number of hydration layer water molecules. Nevertheless, they play an important role in stabilizing the protein conformation. Water molecules near the third helix (which is the important helix for biological function) are enthalpically least stable and exhibit the fastest dynamics. Interestingly, barrier height distributions of interfacial water are quite broad for water surrounding all the three helices (and the three coils), with the smallest barriers found for those near the helix-3. For the quasi-bound water molecules near the first and second helices, we use well-known Kramers' theory to estimate the residence time from the free energy surface, by estimating the friction along the reaction coordinate from the diffusion coefficient by using Einstein relation. The agreement found is satisfactory. We discuss the possible biological function of these slow, quasi-bound (but transient) water molecules on the surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The orientational relaxation dynamics of water confined between mica surfaces is investigated using molecular dynamics simulations. The study illustrates the wide heterogeneity that exists in the dynamics of water adjacent to a strongly hydrophilic surface such as mica. Analysis of the survival probabilities in different layers is carried out by normalizing the corresponding relaxation times with bulk water layers of similar thickness. A 10-fold increase in the survival times is observed for water directly in contact with the mica surface and a non-monotonic variation in the survival times is observed moving away from the mica surface to the bulk-like interior. The orientational relaxation time is highest for water in the contact layer, decreasing monotonically away from the surface. In all cases the ratio of the relaxation times of the 1st and 2nd rank Legendre polynomials of the HH bond vector is found to lie between 1.5 and 1.9 indicating that the reorientational relaxation in the different water layers is governed by jump dynamics. The orientational dynamics of water in the contact layer is particularly novel and is found to undergo distinct two-dimensional hydrogen bond jump reorientational dynamics with an average waiting time of 4.97 ps. The waiting time distribution is found to possess a long tail extending beyond 15 ps. Unlike previously observed jump dynamics in bulk water and other surfaces, jump events in the mica contact layer occur between hydrogen bonds formed by the water molecule and acceptor oxygens on the mica surface. Despite slowing down of the water orientational relaxation near the surface, life-times of water in the hydration shell of the K ion are comparable to that observed in bulk salt solutions. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4717710]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Layer-wise, distance-dependent orientational relaxation of water confined in reverse micelles (RM) is studied using theoretical and computational tools. We use both a newly constructed ``spins on a ring'' (SOR) Ising-type model (with Shore-Zwanzig rotational dynamics) and atomistic simulations with explicit water. Our study explores the effect of reverse micelle size and role of intermolecular correlations, compromised by the presence of a highly polar surface, on the distance (from the interface) dependence of water relaxation. The ``spins on a ring'' model can capture some aspects of distance dependence of relaxation, such as acceleration of orientational relaxation at intermediate layers. In atomistic simulations, layer-wise decomposition of hydrogen bond formation pattern clearly reveals that hydrogen bond arrangement of water at a certain distance away from the surface can remain frustrated due to the interaction with the polar surface head groups. This layer-wise analysis also reveals the presence of a non-monotonic slow relaxation component which can be attributed to this frustration effect and which is accentuated in small to intermediate size RMs. For large size RMs, the long time component decreases monotonically from the interface to the interior of the RMs with slowest relaxation observed at the interface. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4732095]