984 resultados para Null-Plane Gauge Conditions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The local characteristics of the anti-plane shear stress and strain field are determined for a material where the stress increases linearly with strain up to a limit and then softens nonlinearly. Two unloading models are considered such that the unloading path always returns to the origin while the other assumes the unloading modulus to be that of the initial shear modulus. As the applied shear increases, an unloading zone is found to prevail between a zone in which the material softens and another zone in which the material is linear-elastic even though the crack does not propagate. The divisions of these zones are displayed graphically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new high-order refined shear deformation theory based on Reissner's mixed variational principle in conjunction with the state- space concept is used to determine the deflections and stresses for rectangular cross-ply composite plates. A zig-zag shaped function and Legendre polynomials are introduced to approximate the in-plane displacement distributions across the plate thickness. Numerical results are presented with different edge conditions, aspect ratios, lamination schemes and loadings. A comparison with the exact solutions obtained by Pagano and the results by Khdeir indicates that the present theory accurately estimates the in-plane responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an exact analysis for high order asymptotic field of the plane stress crack problem. It has been shown that the second order asymptotic field is not an independent eigen field and should be matched with the elastic strain term of the first order asymptotic field. The second order stress field ahead of the crack tip is quite small compared with the first order stress field. The stress field ahead of crack tip is characterized by the HRR field. Hence the J integral can be used as a criterion for crack initiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Floating zone crystal growth in microgravity environment is investigated numerically by a finite element method for semiconductor growth processing, which involves thermocapillary convection, phase change convection, thermal diffusion and solutal diffusion. The configurations of phase change interfaces and distributions of velocity, temperature and concentration fields are analyzed for typical conditions of pulling rates and segregation coefficients. The influence of phase change convection on the distribution of concentration is studied in detail. The results show that the thermocapillary convection plays an important role in mixing up the melt with dopant. The deformations of phase change interfaces by thermal convection-diffusion and pulling rods make larger variation of concentration field in comparison with the case of plane interfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the idea proposed by Hu [Scientia Sinica Series A XXX, 385-390 (1987)], a new type of boundary integral equation for plane problems of elasticity including rotational forces is derived and its boundary element formulation is presented. Numerical results for a rotating hollow disk are given to demonstrate the accuracy of the new type of boundary integral equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaAs single crystals have been grown under high gravity conditions, up to 9g0, by a recrystallization method with decreasing temperature. The impurity striations in GaAs grown under high gravity become weak and indistinct with smaller striation spacings. The dislocation density of surcharge-grown GaAs increases with increase of centrifugal force. The cathodoluminescence results also show worse perfection in the GaAs grown at high gravity than at normal earth gravity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crack growth due to cavity growth and coalescence along grain boundaries is analyzed under transient and extensive creep conditions in a compact tension specimen. Account is taken of the finite geometry changes accompanying crack tip blunting. The material is characterized as an elastic-power law creeping solid with an additional contribution to the creep rate arising from a given density of cavitating grain boundary facets. All voids are assumed present from the outset and distributed on a given density of cavitating grain boundary facets. The evolution of the stress fields with crack growth under three load histories is described in some detail for a relatively ductile material. The full-field plane strain finite element calculations show the competing effects of stress relaxation due to constrained creep, diffusion and crack tip blunting. and of stress increase due to the instantaneous elastic response to crack growth. At very high crack growth rates the Hui-Riedel fields dominate the crack tip region. However. the high growth rates are not sustained for any length of time in the compact tension geometry analyzed. The region of dominance of the Hui-Riedel field shrinks rapidly so that the near-tip fields are controlled by the HRR-type field shortly after the onset of crack growth. Crack growth rates under various conditions of loading and spanning the range of times from small scale creep to extensive creep are obtained. We show that there is a strong similarity between crack growth history and the behaviour of the C(t) and C(t) parameters. so that crack growth rates correlate rather well with C(t) and C(t). A relatively brittle material is also considered that has a very different near-tip stress field and crack growth history.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The elastic plane problem of collinear rigid lines under arbitrary loads is dealt with. Applying the Riemann-Schwarz symmetry principle integrated with the analysis of the singularity of complex stress functions, the general formulation is presented, and the closed-form solutions to several problems of practical importance are given, which include some published results as the special cases. Lastly the stress distribution in the immediate vicinity of the rigid line end is examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For most practically important plane elasticity problems of orthotropic materials, stresses depend on elastic constants through two nondimensional combinations. A spatial rescaling has been found to reduce the orthotropic problems to equivalent problems in materials with cubic symmetry. The latter, under favorable conditions, may be approximated by isotropic materials. Consequently, solutions for orthotropic materials can be constructed approximately from isotropic material solutions or rigorously from cubic ones. The concept is developed to gain insight into the interplay between anisotropy and finite geometry. The inherent simplicity of the solutions allows a variety of technical problems to be addressed efficiently. Included are stress concentration related cracking, effective contraction of orthotropic material specimens, crack deflection onto easy fracture planes, and surface flaw induced delamination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of ductile damage caused by secondary void damage in the matrix around primary voids is studied by large strain, finite element analysis. A cylinder embedding an initially spherical void, a plane stress cell with a circular void and plane strain cell with a cylindrical or a flat void are analysed under different loading conditions. Secondary voids of smaller scale size nucleate in the strain hardening matrix, according to the requirements of some stress/strain criteria. Their growth and coalescence, handled by the empty element technique, demonstrate distinct mechanisms of damage as circumstances change. The macroscopic stress-strain curves are decomposed and illustrated in the form of the deviatoric and the volumetric parts. Concerning the stress response and the void growth prediction, comparisons are made between the present numerical results and those of previous authors. It is shown that loading condition, void growth history and void shape effect incorporated with the interaction between two generations of voids should be accounted for besides the void volume fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, fundamental equations of the plane strain problem based on the 3-dimensional plastic flow theory are presented for a perfectly-plastic solid The complete governing equations for the growing crack problem are developed. The formulae for determining the velocity field are derived.The asymptotic equation consists of the premise equation and the zero-order governing equation. It is proved that the Prandtl centered-fan sector satisfies asymptotic equation but does not meet the needs of hlgher-order governing equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The local-global anatysis method is systematically extended to the fracture analysis of spherical shells. On the basis of the shallow shell theory, which takes into account transverse shear deformations, governing equations for cracked spherical shells expressed in displacement and stress functions f, F and φ are proposed, and then a general solution including Modes, Ⅰ, Ⅱ, Ⅲ for stress-strain fields at crack tip in a spherical shell is obtained, which plays the same role as Williams's expansion in plane elasticity. The numerical results for finite-size spherical shells under different boundary conditions have been obtained. Furthermore, the bulging factors are analyzed with regard to shearing stiffness and an approximate formula is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the governing equations and the analytical method of the secondorder asymptotic field for the plane-straln crack problems of mode I have been presented. The numerical calculation has been carried out. The amplitude coefficients k2 of the second term of the asymptotic field have been determined after comparing the present results with some fine results of the finite element calculation. The variation of coefficients k2 with changes of specimen geometry and developments of plastic zone have been analysed. It is shown that the second term of the asymptotic field has significant influence on the near-crack-tip field. Therefore, we may reasonably argue that both the J-integral and the coefficient k2 can beeome two characterizing parameters for crack initiation.

Relevância:

20.00% 20.00%

Publicador: