904 resultados para Nucleus Stimulation
Resumo:
Background Chronic exposure to musical auditory stimulation has been reported to improve cardiac autonomic regulation. However, it is not clear if music acutely influences it in response to autonomic tests. We evaluated the acute effects of music on heart rate variability (HRV) responses to the postural change maneuver (PCM) in women. Method We evaluated 12 healthy women between 18 and 28 years old and HRV was analyzed in the time (SDNN, RMSSD, NN50 and pNN50) and frequency (LF, HF and LF/HF ratio) domains. In the control protocol, the women remained at seated rest for 10 minutes and quickly stood up within three seconds and remained standing still for 15 minutes. In the music protocol, the women remained at seated rest for 10 minutes, were exposed to music for 10 minutes and quickly stood up within three seconds and remained standing still for 15 minutes. HRV was recorded at the following time: rest, music (music protocol) 0–5, 5–10 and 10–15 min during standing. Results In the control protocol the SDNN, RMSSD and pNN50 indexes were reduced at 10–15 minutes after the volunteers stood up, while the LF (nu) index was increased at the same moment compared to seated rest. In the protocol with music, the indexes were not different from control but the RMSSD, pNN50 and LF (nu) were different from the music period. Conclusion Musical auditory stimulation attenuates the cardiac autonomic responses to the PCM.
Resumo:
It is clear that sudden unexpected death in epilepsy (SUDEP) is mainly a problem for people with refractory epilepsy, but our understanding of the best way to its prevention is still incomplete. Although the pharmacological treatments available for epilepsies have expanded, some antiepileptic drugs are still limited in clinical efficacy. In the present paper, we described an experience with vagus nerve stimulation (VNS) treatment by opening space and providing the opportunity to implement effective preventative maps to reduce the incidence of SUDEP in children and adolescents with refractory epilepsy.
Resumo:
This study compared the effectiveness of the multifocal visual evoked cortical potentials (mfVEP) elicited by pattern pulse stimulation with that of pattern reversal in producing reliable responses (signal-to-noise ratio >1.359). Participants were 14 healthy subjects. Visual stimulation was obtained using a 60-sector dartboard display consisting of 6 concentric rings presented in either pulse or reversal mode. Each sector, consisting of 16 checks at 99% Michelson contrast and 80 cd/m² mean luminance, was controlled by a binary m-sequence in the time domain. The signal-to-noise ratio was generally larger in the pattern reversal than in the pattern pulse mode. The number of reliable responses was similar in the central sectors for the two stimulation modes. At the periphery, pattern reversal showed a larger number of reliable responses. Pattern pulse stimuli performed similarly to pattern reversal stimuli to generate reliable waveforms in R1 and R2. The advantage of using both protocols to study mfVEP responses is their complementarity: in some patients, reliable waveforms in specific sectors may be obtained with only one of the two methods. The joint analysis of pattern reversal and pattern pulse stimuli increased the rate of reliability for central sectors by 7.14% in R1, 5.35% in R2, 4.76% in R3, 3.57% in R4, 2.97% in R5, and 1.78% in R6. From R1 to R4 the reliability to generate mfVEPs was above 70% when using both protocols. Thus, for a very high reliability and thorough examination of visual performance, it is recommended to use both stimulation protocols.
Resumo:
The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of kappa group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female reproduction
Resumo:
The escape response to electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) has been associated with panic attacks. In order to explore the validity of the DPAG stimulation model for the study of panic disorder, we determined if the aversive consequences of the electrical or chemical stimulation of this midbrain area can be detected subsequently in the elevated T-maze. This animal model, derived from the elevated plus-maze, permits the measurement in the same rat of a generalized anxiety- and a panic-related defensive response, i.e., inhibitory avoidance and escape, respectively. Facilitation of inhibitory avoidance, suggesting an anxiogenic effect, was detected in male Wistar rats (200-220 g) tested in the elevated T-maze 30 min after DPAG electrical stimulation (current generated by a sine-wave stimulator, frequency at 60 Hz) or after local microinjection of the GABA A receptor antagonist bicuculline (5 pmol). Previous electrical (5, 15, 30 min, or 24 h before testing) or chemical stimulation of this midbrain area did not affect escape performance in the elevated T-maze or locomotion in an open-field. No change in the two behavioral tasks measured by the elevated T-maze was observed after repetitive (3 trials) electrical stimulation of the DPAG. The results indicate that activation of the DPAG caused a short-lived, but selective, increase in defensive behaviors associated with generalized anxiety.
Resumo:
Abstract Background: Coactivation may be both desirable (injury prevention) or undesirable (strength measurement). In this context, different styles of muscle strength stimulus have being investigated. In this study we evaluated the effects of verbal and visual stimulation on rectus femoris and biceps femoris muscles contraction during isometric and concentric. Methods: We investigated 13 men (age =23.1 ± 3.8 years old; body mass =75.6 ± 9.1 kg; height =1.8 ± 0.07 m). We used the isokinetic dynamometer BIODEX device and an electromyographic (EMG) system. We evaluated the maximum isometric and isokinetic knee extension and flexion at 60°/s. The following conditions were evaluated: without visual nor verbal command (control); verbal command; visual command and; verbal and visual command. In relation to the concentric contraction, the volunteers performed five reciprocal and continuous contractions at 60°/s. With respect to isometric contractions it was made three contractions of five seconds for flexion and extension in a period of one minute. Results: We found that the peak torque during isometric flexion was higher in the subjects in the VVC condition (p > 0.05). In relation to muscle coactivation, the subjects presented higher values at the control condition (p > 0.05). Conclusion We suggest that this type of stimulus is effective for the lower limbs.
Resumo:
CNPq, FAPESP (2009/54599-5 and 2012/10939-0).
Resumo:
The rostral ventrolateral medulla (RVLM) contains the presympathetic neurons involved in cardiovascular regulation that has been implicated as one of the most important central sites for the antihypertensive action of moxonidine (an α2-adrenergic and imidazoline agonist). Here, we sought to evaluate the cardiovascular effects produced by moxonidine injected into another important brainstem site, the commissural nucleus of the solitary tract (commNTS). Mean arterial pressure (MAP), heart rate (HR), splanchnic sympathetic nerve activity (sSNA) and activity of putative sympathoexcitatory vasomotor neurons of the RVLM were recorded in conscious or urethane-anesthetized, and artificial ventilated male Wistar rats. In conscious or anesthetized rats, moxonidine (2.5 and 5 nmol/50 nl) injected into the commNTS reduced MAP, HR and sSNA. The injection of moxonidine into the commNTS also elicited a reduction of 28% in the activity of sympathoexcitatory vasomotor neurons of the RVLM. To further assess the notion that moxonidine could act in another brainstem area to elicit the antihypertensive effects, a group with electrolytic lesions of the commNTS or sham and with stainless steel guide-cannulas implanted into the 4th V were used. In the sham group, moxonidine (20 nmol/1 μl) injected into 4th V decreased MAP and HR. The hypotension but not the bradycardia produced by moxonidine into the 4th V was reduced in acute (1 day) commNTS-lesioned rats. These data suggest that moxonidine can certainly act in other brainstem regions, such as commNTS to produce its beneficial therapeutic effects, such as hypotension and reduction in sympathetic nerve activity.
Resumo:
Maternal aggression is under the control of a wide variety of factors that prime the females for aggression or trigger the aggressive event. Maternal attacks are triggered by the perception of sensory cues from the intruder, and here we have identified a site in the hypothalamus of lactating rats that is highly responsive to the male intruder—the ventral premammillary nucleus (PMv). The PMv is heavily targeted by the medial amygdalar nucleus, and we used lesion and immediate-early gene studies to test our working hypothesis that the PMv signals the presence of a male intruder and transfers this information to the network organizing maternal aggression. PMv-lesioned dams exhibit significantly reduced maternal aggression, without affecting maternal care. The Fos analysis revealed that PMv influences the activation of hypothalamic and septal sites shown to be mobilized during maternal aggression, including the medial preoptic nucleus (likely to represent an important locus to integrate priming stimuli critical for maternal aggression), the caudal two-thirds of the hypothalamic attack area (comprising the ventrolateral part of the ventromedial hypothalamic nucleus and the adjacent tuberal region of the lateral hypothalamic area, critical for the expression of maternal aggression), and the ventral part of the anterior bed nuclei of the stria terminalis (presently discussed as being involved in controlling neuroendocrine and autonomic responses accompanying maternal aggression). These findings reveal an important role for the PMv in detecting the male intruder and how this nucleus modulates the network controlling maternal aggression.
Resumo:
Injections of noradrenaline into the lateral parabrachial nucleus (LPBN) increase arterial pressure and 1.8% NaCl intake and decrease water intake in rats treated with the diuretic furosemide (FURO) combined with a low dose of the angiotensin converting enzyme inhibitor captopril (CAP). In the present study, we investigated the influence of the pressor response elicited by noradrenaline injected into the LPBN on FURO+CAP-induced water and 1.8% NaCl intake. Male Holtzman rats with bilateral stainless steel guide-cannulas implanted into LPBN were used. Bilateral injections of noradrenaline (40 nmol/0.2 μl) into the LPBN increased FURO+CAP-induced 1.8% NaCl intake (12.2±3.5, vs., saline: 4.2±0.8 ml/180 min), reduced water intake and strongly increased arterial pressure (50±7, vs. saline: 1±1 mmHg). The blockade of the α1 adrenoceptors with the prazosin injected intraperitoneally abolished the pressor response and increased 1.8% NaCl and water intake in rats treated with FURO+CAP combined with noradrenaline injected into the LPBN. The deactivation of baro and perhaps volume receptors due to the cardiovascular effects of prazosin is a mechanism that may facilitate water and NaCl intake in rats treated with FURO+CAP combined with noradrenaline injected into the LPBN. Therefore, the activation of α2 adrenoceptors with noradrenaline injected into the LPBN, at least in dose tested, may not completely remove the inhibitory signals produced by the activation of the cardiovascular receptors, particularly the signals that result from the extra activation of these receptors with the increase of arterial pressure.
Resumo:
The suprachiasmatic nucleus (SCN), which is the main circadian biological clock in mammals, is composed of multiple cells that function individually as independent oscillators to express the self-sustained mRNA and protein rhythms of the so-called clock genes. Knowledge regarding the presence and localization of the proteins and neuroactive substances of the SCN are essential for understanding this nucleus and for its successful manipulation. Although there have been advances in the investigation of the intrinsic organization of the SCN in rodents, little information is available in diurnal species, especially in primates. This study, which explores the pattern of expression and localization of PER2 protein in the SCN of capuchin monkey, evaluates aspects of the circadian system that are common to both primates and rodents. Here, we showed that PER2 protein immunoreactivity is higher during the light phase. Additionally, the complex organization of cells that express vasopressin, vasoactive intestinal polypeptide, neuron-specific nuclear protein, calbindin and calretinin in the SCN, as demonstrated by their immunoreactivity, reveals an intricate network that may be related to the similarities and differences reported between rodents and primates in the literature.
Resumo:
P2X receptors are expressed on ventrolateral medulla projecting paraventricular nucleus (PVN) neurons. Here, we investigate the role of adenosine 5′-triphosphate (ATP) in modulating sympathetic nerve activity (SNA) at the level of the PVN. We used an in situ arterially perfused rat preparation to determine the effect of P2 receptor activation and the putative interaction between purinergic and glutamatergic neurotransmitter systems within the PVN on lumbar SNA (LSNA). Unilateral microinjection of ATP into the PVN induced a dose-related increase in the LSNA (1 nmol: 38 ± 6 %, 2.5 nmol: 72 ± 7 %, 5 nmol: 96 ± 13 %). This increase was significantly attenuated by blockade of P2 receptors (pyridoxalphosphate-6-azophenyl-20,40-disulphonic acid, PPADS) and glutamate receptors (kynurenic acid, KYN) or a combination of both. The increase in LSNA elicited by L-glutamate microinjection into the PVN was not affected by a previous injection of PPADS. Selective blockade of non-N-methyl-D-aspartate receptors (6-cyano-7-nitroquinoxaline-2,3-dione disodium salt, CNQX), but not N-methyl-D-aspartate receptors (NMDA) receptors (DL-2-amino-5-phosphonopentanoic acid, AP5), attenuated the ATP-induced sympathoexcitatory effects at the PVN level. Taken together, our data show that purinergic neurotransmission within the PVN is involved in the control of SNA via P2 receptor activation. Moreover, we show an interaction between P2 receptors and non-NMDA glutamate receptors in the PVN suggesting that these functional interactions might be important in the regulation of sympathetic outflow
Resumo:
The paraventricular nucleus (PVN) of the hypothalamus plays an important role in the regulation of sympathetic nerve activity, which is significantly elevated in chronic heart failure (CHF). Fractalkine (FKN) and its cognate receptor, CX3CR1, are constitutively expressed in the central nervous system, but their role and physiological significance are not well known. The aims of the present study were to determine whether FKN plays a cardiovascular role within the PVN and to investigate how the actions of FKN might be altered in CHF. We show that both FKN and CX3CR1 are expressed on neurons in the PVN of rats, suggesting that they may have a physiological function in this brain nucleus. Unilateral microinjection of FKN directly into the PVN of anaesthetized rats elicited a significant dose-related decrease in blood pressure (1.0 nmol, -5 ± 3 mmHg; 2.5 nmol, -13 ± 2 mmHg; 5.0 nmol, -22 ± 3 mmHg; and 7.5 nmol, -32 ± 3 mmHg) and a concomitant increase in heart rate (1.0 nmol, 6 ± 3 beats min(-1); 2.5 nmol, 11 ± 3 beats min(-1); 5 nmol, 18 ± 4 beats min(-1); and 7.5 nmol, 27 ± 5 beats min(-1)) compared with control saline microinjections. In order to determine whether FKN signalling is altered in rats with CHF, we first performed quantitative RT-PCR and Western blot analysis and followed these experiments with functional studies in rats with CHF and sham-operated control rats. We found a significant increase in CX3CR1 mRNA and protein expression, as determined by quantitative RT-PCR and Western blot analysis, respectively, in the PVN of rats with CHF compared with sham-operated control rats. We also found that the blood pressure effects of FKN (2.5 nmol in 50 nl) were significantly attenuated in rats with CHF (change in mean arterial pressure, -6 ± 3 mmHg) compared with sham-operated control rats (change in mean arterial pressure, -16 ± 6 mmHg). These data suggest that FKN and its receptor, CX3CR1, modulate cardiovascular function at the level of the PVN and that the actions of FKN within this nucleus are altered in heart failure
Resumo:
Transcription is controlled by promoter-selective transcriptional factors (TFs), which bind to cis-regulatory enhancers elements, termed hormone response elements (HREs), in a specific subset of genes. Regulation by these factors involves either the recruitment of coactivators or corepressors and direct interaction with the basal transcriptional machinery (1). Hormone-activated nuclear receptors (NRs) are well characterized transcriptional factors (2) that bind to the promoters of their target genes and recruit primary and secondary coactivator proteins which possess many enzymatic activities required for gene expression (1,3,4). In the present study, using single-cell high-resolution fluorescent microscopy and high throughput microscopy (HTM) coupled to computational imaging analysis, we investigated transcriptional regulation controlled by the estrogen receptor alpha (ERalpha), in terms of large scale chromatin remodeling and interaction with the associated coactivator SRC-3 (Steroid Receptor Coactivator-3), a member of p160 family (28) primary coactivators. ERalpha is a steroid-dependent transcriptional factor (16) that belongs to the NRs superfamily (2,3) and, in response to the hormone 17-ß estradiol (E2), regulates transcription of distinct target genes involved in development, puberty, and homeostasis (8,16). ERalpha spends most of its lifetime in the nucleus and undergoes a rapid (within minutes) intranuclear redistribution following the addition of either agonist or antagonist (17,18,19). We designed a HeLa cell line (PRL-HeLa), engineered with a chromosomeintegrated reporter gene array (PRL-array) containing multicopy hormone response-binding elements for ERalpha that are derived from the physiological enhancer/promoter region of the prolactin gene. Following GFP-ER transfection of PRL-HeLa cells, we were able to observe in situ ligand dependent (i) recruitment to the array of the receptor and associated coregulators, (ii) chromatin remodeling, and (iii) direct transcriptional readout of the reporter gene. Addition of E2 causes a visible opening (decondensation) of the PRL-array, colocalization of RNA Polymerase II, and transcriptional readout of the reporter gene, detected by mRNA FISH. On the contrary, when cells were treated with an ERalpha antagonist (Tamoxifen or ICI), a dramatic condensation of the PRL-array was observed, displacement of RNA Polymerase II, and complete decreasing in the transcriptional FISH signal. All p160 family coactivators (28) colocalize with ERalpha at the PRL-array. Steroid Receptor Coactivator-3 (SRC-3/AIB1/ACTR/pCIP/RAC3/TRAM1) is a p160 family member and a known oncogenic protein (4,34). SRC-3 is regulated by a variety of posttranslational modifications, including methylation, phosphorylation, acetylation, ubiquitination and sumoylation (4,35). These events have been shown to be important for its interaction with other coactivator proteins and NRs and for its oncogenic potential (37,39). A number of extracellular signaling molecules, like steroid hormones, growth factors and cytokines, induce SRC-3 phosphorylation (40). These actions are mediated by a wide range of kinases, including extracellular-regulated kinase 1 and 2 (ERK1-2), c-Jun N-terminal kinase, p38 MAPK, and IkB kinases (IKKs) (41,42,43). Here, we report SRC-3 to be a nucleocytoplasmic shuttling protein, whose cellular localization is regulated by phosphorylation and interaction with ERalpha. Using a combination of high throughput and fluorescence microscopy, we show that both chemical inhibition (with U0126) and siRNA downregulation of the MAP/ERK1/2 kinase (MEK1/2) pathway induce a cytoplasmic shift in SRC-3 localization, whereas stimulation by EGF signaling enhances its nuclear localization by inducing phosphorylation at T24, S857, and S860, known partecipants in the regulation of SRC-3 activity (39). Accordingly, the cytoplasmic localization of a non-phosphorylatable SRC-3 mutant further supports these results. In the presence of ERalpha, U0126 also dramatically reduces: hormone-dependent colocalization of ERalpha and SRC-3 in the nucleus; formation of ER-SRC-3 coimmunoprecipitation complex in cell lysates; localization of SRC-3 at the ER-targeted prolactin promoter array (PRL-array) and transcriptional activity. Finally, we show that SRC-3 can also function as a cotransporter, facilitating the nuclear-cytoplasmic shuttling of estrogen receptor. While a wealth of studies have revealed the molecular functions of NRs and coregulators, there is a paucity of data on how these functions are spatiotemporally organized in the cellular context. Technically and conceptually, our findings have a new impact upon evaluating gene transcriptional control and mechanisms of action of gene regulators.