955 resultados para Nonplanar cationic porphyrins
Resumo:
Activation of human platelets with thrombin transiently increases phosphorylation at 558threonine of moesin as determined with phosphorylation state-specific antibodies. This specific modification is completely inhibited by the kinase inhibitor staurosporine and maximally promoted by the phosphatase inhibitor calyculin A, making it possible to purify the two forms of moesin to homogeneity. Blot overlay assays with F-actin probes labeled with either [32P]ATP or 125I show that only phosphorylated moesin interacts with F-actin in total platelet lysates, in moesin antibody immunoprecipitates, and when purified. In the absence of detergents, both forms of the isolated protein are aggregated. Phosphorylated, purified moesin co-sediments with α- or β/γ-actin filaments in cationic, but not in anionic, nonionic, or amphoteric detergents. The interaction affinity is high (Kd, ∼1.5 nM), and the maximal moesin:actin stoichiometry is 1:1. This interaction is also observed in platelets extracted with cationic but not with nonionic detergents. In 0.1% Triton X-100, F-actin interacts with phosphorylated moesin only in the presence of polyphosphatidylinositides. Thus, both polyphosphatidylinositides and phosphorylation can activate moesin’s high-affinity F-actin binding site in vitro. Dual regulation by both mechanisms may be important for proper cellular control of moesin-mediated linkages between the actin cytoskeleton and the plasma membrane.
Resumo:
Multidrug resistance pumps (MDRs) protect microbial cells from both synthetic and natural antimicrobials. Amphipathic cations are preferred substrates of MDRs. Berberine alkaloids, which are cationic antimicrobials produced by a variety of plants, are readily extruded by MDRs. Several Berberis medicinal plants producing berberine were found also to synthesize an inhibitor of the NorA MDR pump of a human pathogen Staphylococcus aureus. The inhibitor was identified as 5′-methoxyhydnocarpin (5′-MHC), previously reported as a minor component of chaulmoogra oil, a traditional therapy for leprosy. 5′-MHC is an amphipathic weak acid and is distinctly different from the cationic substrates of NorA. 5′-MHC had no antimicrobial activity alone but strongly potentiated the action of berberine and other NorA substrates against S. aureus. MDR-dependent efflux of ethidium bromide and berberine from S. aureus cells was completely inhibited by 5′-MHC. The level of accumulation of berberine in the cells was increased strongly in the presence of 5′-MHC, indicating that this plant compound effectively disabled the bacterial resistance mechanism against the berberine antimicrobial.
Resumo:
Phenylamidine cationic groups linked by a furan ring (furamidine) and related compounds bind as monomers to AT sequences of DNA. An unsymmetric derivative (DB293) with one of the phenyl rings of furamidine replaced with a benzimidazole has been found by quantitative footprinting analyses to bind to GC-containing sites on DNA more strongly than to pure AT sequences. NMR structural analysis and surface plasmon resonance binding results clearly demonstrate that DB293 binds in the minor groove at specific GC-containing sequences of DNA in a highly cooperative manner as a stacked dimer. Neither the symmetric bisphenyl nor bisbenzimidazole analogs of DB293 bind significantly to the GC containing sequences. DB293 provides a paradigm for design of compounds for specific recognition of mixed DNA sequences and extends the boundaries for small molecule-DNA recognition.
Resumo:
Certain proteins contain subunits that enable their active translocation across the plasma membrane into cells. In the specific case of HIV-1, this subunit is the basic domain Tat49–57 (RKKRRQRRR). To establish the optimal structural requirements for this translocation process, and thereby to develop improved molecular transporters that could deliver agents into cells, a series of analogues of Tat49–57 were prepared and their cellular uptake into Jurkat cells was determined by flow cytometry. All truncated and alanine-substituted analogues exhibited diminished cellular uptake, suggesting that the cationic residues of Tat49–57 play a principal role in its uptake. Charge alone, however, is insufficient for transport as oligomers of several cationic amino acids (histidine, lysine, and ornithine) are less effective than Tat49–57 in cellular uptake. In contrast, a 9-mer of l-arginine (R9) was 20-fold more efficient than Tat49–57 at cellular uptake as determined by Michaelis–Menton kinetic analysis. The d-arginine oligomer (r9) exhibited an even greater uptake rate enhancement (>100-fold). Collectively, these studies suggest that the guanidinium groups of Tat49–57 play a greater role in facilitating cellular uptake than either charge or backbone structure. Based on this analysis, we designed and synthesized a class of polyguanidine peptoid derivatives. Remarkably, the subset of peptoid analogues containing a six-methylene spacer between the guanidine head group and backbone (N-hxg), exhibited significantly enhanced cellular uptake compared to Tat49–57 and even to r9. Overall, a transporter has been developed that is superior to Tat49–57, protease resistent, and more readily and economically prepared.
Resumo:
The crystal structure of the complex of a catalytic antibody with its cationic hapten at 1.9-Å resolution demonstrates that the hapten amidinium group is stabilized through an ionic pair interaction with the carboxylate of a combining-site residue. The location of this carboxylate allows it to act as a general base in an allylic rearrangement. When compared with structures of other antibody complexes in which the positive moiety of the hapten is stabilized mostly by cation–π interactions, this structure shows that the amidinium moiety is a useful candidate to elicit a carboxylate in an antibody combining site at a predetermined location with respect to the hapten. More generally, this structure highlights the advantage of a bidentate hapten for the programmed positioning of a chemically reactive residue in an antibody through charge complementarity to the hapten.
Resumo:
We previously determined that a linear co-polymer of histidine and lysine (HK) in combination with liposomes enhanced the transfection efficiency of cationic liposomes. In the current study, we designed a series of HK polymers with increased branching and/or histidine/lysine ratio to determine if either variable affects transfection efficiency. In the presence of liposomes, the branched polymer with the highest number of histidines, HHK4b, was the most effective at enhancing gene expression. Furthermore, when serum was added to the medium during transfection, the combination of HHK4b and liposomes as a gene-delivery vehicle increased luciferase expression 400-fold compared to liposomes alone. In contrast to linear HK polymers, the higher branched HHK polymers were effective carriers of plasmids in the absence of liposomes. Without liposomes, the HHK4b carrier enhanced luciferase expression 15-fold in comparison with the lesser branched HHK2b carrier and increased expression by 5-logs in comparison with the HHK or HK carrier. The interplay of several parameters including increased condensation of DNA, buffering of acidic endosomes and differential binding affinities of polymer with DNA have a role in the enhancement of transfection by the HK polymers. In addition to suggesting that branched HK polymers are promising gene-delivery vehicles, this study provides a framework for the development of more efficient peptide-bond-based polymers of histidine and lysine.
Resumo:
Sm proteins form the core of small nuclear ribonucleoprotein particles (snRNPs), making them key components of several mRNA-processing assemblies, including the spliceosome. We report the 1.75-Å crystal structure of SmAP, an Sm-like archaeal protein that forms a heptameric ring perforated by a cationic pore. In addition to providing direct evidence for such an assembly in eukaryotic snRNPs, this structure (i) shows that SmAP homodimers are structurally similar to human Sm heterodimers, (ii) supports a gene duplication model of Sm protein evolution, and (iii) offers a model of SmAP bound to single-stranded RNA (ssRNA) that explains Sm binding-site specificity. The pronounced electrostatic asymmetry of the SmAP surface imparts directionality to putative SmAP–RNA interactions.
Resumo:
It is becoming clear that the cationic antimicrobial peptides are an important component of the innate defenses of all species of life. Such peptides can be constitutively expressed or induced by bacteria or their products. The best peptides have good activities vs. a broad range of bacterial strains, including antibiotic-resistant isolates. They kill very rapidly, do not easily select resistant mutants, are synergistic with conventional antibiotics, other peptides, and lysozyme, and are able to kill bacteria in animal models. It is known that bacterial infections, especially when treated with antibiotics, can lead to the release of bacterial products such as lipopolysaccharide (LPS) and lipoteichoic acid, resulting in potentially lethal sepsis. In contrast to antibiotics, the peptides actually prevent cytokine induction by bacterial products in tissue culture and human blood, and they block the onset of sepsis in mouse models of endotoxemia. Consistent with this, transcriptional gene array experiments using a macrophage cell line demonstrated that a model peptide, CEMA, blocks the expression of many genes whose transcription was induced by LPS. The peptides do this in part by blocking LPS interaction with the serum protein LBP. In addition, CEMA itself has a direct effect on macrophage gene expression. Because cationic antimicrobial peptides are induced by LPS and are able to dampen the septic response of animal cells to LPS, we propose that, in addition to their role in direct and lysozyme-assisted killing of microbes, they have a role in feedback regulation of cytokine responses. We are currently developing variant peptides as therapeutics against antibiotic-resistant infections.
Resumo:
Ca2+ in rooting medium is essential for root elongation, even in the absence of added toxicants. In the presence of rhizotoxic levels of Al3+, H+, or Na+ (or other cationic toxicants), supplementation of the medium with higher levels of Ca2+ alleviates growth inhibition. Experiments to determine the mechanisms of alleviation entailed measurements of root elongation in wheat (Triticum aestivum L. cv Scout 66) seedlings in controlled medium. A Gouy-Chapman-Stern model was used to compute the electrical potentials and the activities of ions at the root-cell plasma membrane surfaces. Analysis of root elongation relative to the computed surface activities of ions revealed three separate mechanisms of Ca2+ alleviation. Mechanism I is the displacement of cell-surface toxicant by the Ca2+-induced reduction in cell-surface negativity. Mechanism II is the restoration of Ca2+ at the cell surface if the surface Ca2+ has been reduced by the toxicant to growth-limiting levels. Mechanism III is the collective ameliorative effect of Ca2+ beyond mechanisms I and II, and may involve Ca2+-toxicant interactions at the cell surface other than the displacement interactions of mechanisms I and II. Mechanism I operated in the alleviation of all of the tested toxicities; mechanism II was generally a minor component of alleviation; and mechanism III was toxicant specific and operated strongly in the alleviation of Na+ toxicity, moderately in the alleviation of H+ toxicity, and not at all in the alleviation of Al3+ toxicity.
Resumo:
Experimental studies of complete mammalian genes and other genetic domains are impeded by the difficulty of introducing large DNA molecules into cells in culture. Previously we have shown that GST–Z2, a protein that contains three zinc fingers and a proline-rich multimerization domain from the polydactyl zinc finger protein RIP60 fused to glutathione S-transferase (GST), mediates DNA binding and looping in vitro. Atomic force microscopy showed that GST–Z2 is able to condense 130–150 kb bacterial artificial chromosomes (BACs) into protein–DNA complexes containing multiple DNA loops. Condensation of the DNA loops onto the Z2 protein–BAC DNA core complexes with cationic lipid resulted in particles that were readily transferred into multiple cell types in culture. Transfer of total genomic linear DNA containing amplified DHFR genes into DHFR– cells by GST–Z2 resulted in a 10-fold higher transformation rate than calcium phosphate co-precipitation. Chinese hamster ovarian cells transfected with a BAC containing the human TP53 gene locus expressed p53, showing native promoter elements are active after GST–Z2-mediated gene transfer. Because DNA condensation by GST–Z2 does not require the introduction of specific recognition sequences into the DNA substrate, condensation by the Z2 domain of RIP60 may be used in conjunction with a variety of other agents to provide a flexible and efficient non-viral platform for the delivery of large genes into mammalian cells.
Resumo:
We report evidence that gene complexes, consisting of polycations and plasmid DNA enter cells via binding to membrane-associated proteoglycans. Treatment of HeLa cells with sodium chlorate, a potent inhibitor of proteoglycan sulfation, reduced luciferase expression by 69%. Cellular treatment with heparinase and chondroitinase ABC inhibited expression by 78% and 20% with respect to control cells. Transfection was dramatically inhibited by heparin and heparan sulfate and to a smaller extent by chondroitan sulfate B. Transfection of mutant, proteoglycan deficient Chinese hamster ovary cells was 53 x lower than of wild-type cells. For each of these assays, the intracellular uptake of DNA at 37 degrees C and the binding of DNA to the cell membrane at 4 degrees C was impaired. Preliminary transfection experiments conducted in mutant and wild-type Chinese hamster ovary cells suggest that transfection by some cationic lipids is also proteoglycan dependent. The variable distribution of proteoglycans among tissues may explain why some cell types are more susceptible to transfection than others.
Resumo:
Two putative ribonucleases have been isolated from the secondary granules of mouse eosinophils. Degenerate oligonucleotide primers inferred from peptide sequence data were used in reverse transcriptase-PCR reactions of bone marrow-derived cDNA. The resulting PCR product was used to screen a C57BL/6J bone marrow cDNA library, and comparisons of representative clones showed that these genes and encoded proteins are highly homologous (96% identity at the nucleotide level; 92/94% identical/similar at the amino acid level). The mouse proteins are only weakly homologous (approximately 50% amino acid identity) with the human eosinophil-associated ribonucleases (i.e., eosinophil-derived neurotoxin and eosinophil cationic protein) and show no sequence bias toward either human protein. Phylogenetic analyses established that the human and mouse loci shared an ancestral gene, but that independent duplication events have occurred since the divergence of primates and rodents. The duplication event generating the mouse genes was estimated to have occurred < 5 x 10(6) years ago (versus 30 to 40 x 10(6) years ago in primates). The identification of independent duplication events in two extant mammalian orders suggests a selective advantage to having multiple eosinophil granule ribonucleases. Southern blot analyses in the mouse demonstrated the existence of three additional highly homologous genes (i.e., five genes total) as well as several more divergent family members. The potential significance of this observation is the implication of a larger gene subfamily in primates (i.e., humans).
Resumo:
The cation-pi interaction is an important, general force for molecular recognition in biological receptors. Through the sidechains of aromatic amino acids, novel binding sites for cationic ligands such as acetylcholine can be constructed. We report here a number of calculations on prototypical cation-pi systems, emphasizing structures of relevance to biological receptors and prototypical heterocycles of the type often of importance in medicinal chemistry. Trends in the data can be rationalized using a relatively simple model that emphasizes the electrostatic component of the cation-pi interaction. In particular, plots of the electrostatic potential surfaces of the relevant aromatics provide useful guidelines for predicting cation-pi interactions in new systems.
Resumo:
Resistance of Lactococcus lactis to cytotoxic compounds shares features with the multidrug resistance phenotype of mammalian tumor cells. Here, we report the gene cloning and functional characterization in Escherichia coli of LmrA, a lactococcal structural and functional homolog of the human multidrug resistance P-glycoprotein MDR1. LmrA is a 590-aa polypeptide that has a putative topology of six alpha-helical transmembrane segments in the N-terminal hydrophobic domain, followed by a hydrophilic domain containing the ATP-binding site. LmrA is similar to each of the two halves of MDR1 and may function as a homodimer. The sequence conservation between LmrA and MDR1 includes particular regions in the transmembrane domains and connecting loops, which, in MDR1 and the MDR1 homologs in other mammalian species, have been implicated as determinants of drug recognition and binding. LmrA and MDR1 extrude a similar spectrum of amphiphilic cationic compounds, and the activity of both systems is reversed by reserpine and verapamil. As LmrA can be functionally expressed in E. coli, it offers a useful prokaryotic model for future studies on the molecular mechanism of MDR1-like multidrug transporters.
Resumo:
Nerve growth factor (NGF) serum levels were measured in 49 patients with asthma and/or rhinoconjunctivitis and/or urticaria-angioedema. Clinical and biochemical parameters, such as bronchial reactivity, total and specific serum IgE levels, and circulating eosinophil cationic protein levels, were evaluated in relation to NGF values in asthma patients. NGF was significantly increased in the 42 allergic (skin-test- or radioallergosorbent-test-positive) subjects (49.7 +/- 28.8 pg/ml) versus the 18 matched controls (3.8 +/- 1.7 pg/ml; P < 0.001). NGF levels in allergic patients with asthma, rhinoconjunctivitis, and urticaria-angioedema were 132.1 +/- 90.8, 17.6 +/- 6.1, and 7.6 +/- 1.8 pg/ml (P < 0.001, P < 0.002, and P < 0.05 versus controls), respectively. Patients with more than one allergic disease had higher NGF serum values than those with a single disease. When asthma patients were considered as a group, NGF serum values (87.6 +/- 59.8 pg/ml) were still significantly higher than those of control groups (P < 0.001), but allergic asthma patients had elevated NGF serum levels compared with nonallergic asthma patients (132.1 +/- 90.8 versus 4.9 +/- 2.9 pg/ml; P < 0.001). NGF serum levels correlate to total IgE serum values (rho = 0.43; P < 0.02). The highest NGF values were found in patients with severe allergic asthma, a high degree of bronchial hyperreactivity, and high total IgE and eosinophil cationic protein serum levels. This study represents the first observation (that we know of) that NGF is increased in human allergic inflammatory diseases and asthma.