981 resultados para Noninvasive temperature estimation
Resumo:
Abstract In weed biocontrol, similarity of abiotic factors between the native and introduced range of a biocontrol agent is critical to its establishment and effectiveness. This is particularly the case for weeds that have a wide geographical distribution in the native range. For such weeds, the choice of a specialist insect that has narrow tolerance limits to important abiotic factors can diminish its ability to be an effective biocontrol agent. The membracid Aconophora compressa was introduced in Australia from Mexico for biocontrol of Lantana camara, a plant with a wide climatic tolerance. In this study we investigated the effect of constant and alternating temperatures on A. compressa survival. Longevity of adults and nymphs declined with increasing temperatures, and at 39°C individuals survived for less than a day. At lower temperatures, nymphs survived longer than adults. Survival at alternating temperatures was longer than at constant temperatures, but the general trend of lower survival at higher temperatures remained. Spatially and temporally, the climatic tolerance of A. compressa appears to be a subset of that of lantana, thereby limiting its potential impact.
Resumo:
Age estimation from facial images is increasingly receiving attention to solve age-based access control, age-adaptive targeted marketing, amongst other applications. Since even humans can be induced in error due to the complex biological processes involved, finding a robust method remains a research challenge today. In this paper, we propose a new framework for the integration of Active Appearance Models (AAM), Local Binary Patterns (LBP), Gabor wavelets (GW) and Local Phase Quantization (LPQ) in order to obtain a highly discriminative feature representation which is able to model shape, appearance, wrinkles and skin spots. In addition, this paper proposes a novel flexible hierarchical age estimation approach consisting of a multi-class Support Vector Machine (SVM) to classify a subject into an age group followed by a Support Vector Regression (SVR) to estimate a specific age. The errors that may happen in the classification step, caused by the hard boundaries between age classes, are compensated in the specific age estimation by a flexible overlapping of the age ranges. The performance of the proposed approach was evaluated on FG-NET Aging and MORPH Album 2 datasets and a mean absolute error (MAE) of 4.50 and 5.86 years was achieved respectively. The robustness of the proposed approach was also evaluated on a merge of both datasets and a MAE of 5.20 years was achieved. Furthermore, we have also compared the age estimation made by humans with the proposed approach and it has shown that the machine outperforms humans. The proposed approach is competitive with current state-of-the-art and it provides an additional robustness to blur, lighting and expression variance brought about by the local phase features.
Resumo:
Fisheries managers are becoming increasingly aware of the need to quantify all forms of harvest, including that by recreational fishers. This need has been driven by both a growing recognition of the potential impact that noncommercial fishers can have on exploited resources and the requirement to allocate catch limits between different sectors of the wider fishing community in many jurisdictions. Marine recreational fishers are rarely required to report any of their activity, and some form of survey technique is usually required to estimate levels of recreational catch and effort. In this review, we describe and discuss studies that have attempted to estimate the nature and extent of recreational harvests of marine fishes in New Zealand and Australia over the past 20 years. We compare studies by method to show how circumstances dictate their application and to highlight recent developments that other researchers may find of use. Although there has been some convergence of approach, we suggest that context is an important consideration, and many of the techniques discussed here have been adapted to suit local conditions and to address recognized sources of bias. Much of this experience, along with novel improvements to existing approaches, have been reported only in "gray" literature because of an emphasis on providing estimates for immediate management purposes. This paper brings much of that work together for the first time, and we discuss how others might benefit from our experience.
Resumo:
By using a perturbation technique, the Korteweg-de Vries equation is derived for a mixture of warm-ion fluid and hot, isothermal electrons. Stationary solutions are obtained for this equation and are compared with the corresponding solutions for a mixture consisting of cold-ion fluid and hot, isothermal electrons.
Resumo:
NeEstimator v2 is a completely revised and updated implementation of software that produces estimates of contemporary effective population size, using several different methods and a single input file. NeEstimator v2 includes three single-sample estimators (updated versions of the linkage disequilibrium and heterozygote-excess methods, and a new method based on molecular coancestry), as well as the two-sample (moment-based temporal) method. New features include the following: (i) an improved method for accounting for missing data; (ii) options for screening out rare alleles; (iii) confidence intervals for all methods; (iv) the ability to analyse data sets with large numbers of genetic markers (10000 or more); (v) options for batch processing large numbers of different data sets, which will facilitate cross-method comparisons using simulated data; and (vi) correction for temporal estimates when individuals sampled are not removed from the population (Plan I sampling). The user is given considerable control over input data and composition, and format of output files. The freely available software has a new JAVA interface and runs under MacOS, Linux and Windows.
Resumo:
An understanding of processes regulating wheat floret and grain number at higher temperatures is required to better exploit genetic variation. In this study we tested the hypothesis that at higher temperatures, a reduction in floret fertility is associated with a decrease in soluble sugars and this response is exacerbated in genotypes low in water soluble carbohydrates (WSC). Four recombinant inbred lines contrasting for stem WSC were grown at 20/10 degrees C and 11 h photoperiod until terminal spikelet, and then continued in a factorial combination of 20/10 degrees C or 28/14 degrees C with 11 h or 16 h photoperiod until anthesis. Across environments, High WSC lines had more grains per spike associated with more florets per spike. The number of fertile florets was associated with spike biomass at booting and, by extension, with glucose amount, both higher in High WSC lines. At booting, High WSC lines had higher fixed C-13 and higher levels of expression of genes involved in photosynthesis and sucrose transport and lower in sucrose degradation compared with Low WSC lines. At higher temperature, the intrinsic rate of floret development rate before booting was slower in High WSC lines. Grain set declined with the intrinsic rate of floret development before booting, with an advantage for High WSC lines at 28/14 degrees C and 16 h. Genotypic and environmental action on floret fertility and grain set was summarised in a model.
Resumo:
This thesis consists of two parts; in the first part we performed a single-molecule force extension measurement with 10kb long DNA-molecules from phage-λ to validate the calibration and single-molecule capability of our optical tweezers instrument. Fitting the worm-like chain interpolation formula to the data revealed that ca. 71% of the DNA tethers featured a contour length within ±15% of the expected value (3.38 µm). Only 25% of the found DNA had a persistence length between 30 and 60 nm. The correct value should be within 40 to 60 nm. In the second part we designed and built a precise temperature controller to remove thermal fluctuations that cause drifting of the optical trap. The controller uses feed-forward and PID (proportional-integral-derivative) feedback to achieve 1.58 mK precision and 0.3 K absolute accuracy. During a 5 min test run it reduced drifting of the trap from 1.4 nm/min in open-loop to 0.6 nm/min in closed-loop.
Resumo:
Temperature data collected over several years from rocket grenade and other experiments at Point Barrow (Alaska), Fort Churchill (Canada) and Wallops Island (Virginia) have been analysed to determine the effect of geomagnetic activity on the neutral temperature in the mesosphere and to study the latitudinal variation of this effect. An analysis carried out has revealed almost certainly significant correlations between the temperature and the geomagnetic indicies Kp and Ap at Fort Churchill and marginally significant correlations at Barrow and Wallops. This has also been substantiated by a linear regression analysis. The results indicate two types of interdependence between mesospheric temperature and geomagnetic field variations. The first type is the direct heating effect, during a geomagnetic disturbance, which has been observed in the present analysis with a time lag of 3–15 hr at the high latitudes and 36 hr at the middle latitudes. The magnitude of this heating effect has been found to decrease at the lower altitudes. The second type of interrelation which has been observed is temperature perturbations preceding geomagnetic field variations, both presumably caused by a disturbance in atmospheric circulation at these levels.
Resumo:
We derive a new method for determining size-transition matrices (STMs) that eliminates probabilities of negative growth and accounts for individual variability. STMs are an important part of size-structured models, which are used in the stock assessment of aquatic species. The elements of STMs represent the probability of growth from one size class to another, given a time step. The growth increment over this time step can be modelled with a variety of methods, but when a population construct is assumed for the underlying growth model, the resulting STM may contain entries that predict negative growth. To solve this problem, we use a maximum likelihood method that incorporates individual variability in the asymptotic length, relative age at tagging, and measurement error to obtain von Bertalanffy growth model parameter estimates. The statistical moments for the future length given an individual’s previous length measurement and time at liberty are then derived. We moment match the true conditional distributions with skewed-normal distributions and use these to accurately estimate the elements of the STMs. The method is investigated with simulated tag–recapture data and tag–recapture data gathered from the Australian eastern king prawn (Melicertus plebejus).
Resumo:
Terrain traversability estimation is a fundamental requirement to ensure the safety of autonomous planetary rovers and their ability to conduct long-term missions. This paper addresses two fundamental challenges for terrain traversability estimation techniques. First, representations of terrain data, which are typically built by the rover’s onboard exteroceptive sensors, are often incomplete due to occlusions and sensor limitations. Second, during terrain traversal, the rover-terrain interaction can cause terrain deformation, which may significantly alter the difficulty of traversal. We propose a novel approach built on Gaussian process (GP) regression to learn, and consequently to predict, the rover’s attitude and chassis configuration on unstructured terrain using terrain geometry information only. First, given incomplete terrain data, we make an initial prediction under the assumption that the terrain is rigid, using a learnt kernel function. Then, we refine this initial estimate to account for the effects of potential terrain deformation, using a near-to-far learning approach based on multitask GP regression. We present an extensive experimental validation of the proposed approach on terrain that is mostly rocky and whose geometry changes as a result of loads from rover traversals. This demonstrates the ability of the proposed approach to accurately predict the rover’s attitude and configuration in partially occluded and deformable terrain.
Resumo:
Data-driven approaches such as Gaussian Process (GP) regression have been used extensively in recent robotics literature to achieve estimation by learning from experience. To ensure satisfactory performance, in most cases, multiple learning inputs are required. Intuitively, adding new inputs can often contribute to better estimation accuracy, however, it may come at the cost of a new sensor, larger training dataset and/or more complex learning, some- times for limited benefits. Therefore, it is crucial to have a systematic procedure to determine the actual impact each input has on the estimation performance. To address this issue, in this paper we propose to analyse the impact of each input on the estimate using a variance-based sensitivity analysis method. We propose an approach built on Analysis of Variance (ANOVA) decomposition, which can characterise how the prediction changes as one or more of the input changes, and also quantify the prediction uncertainty as attributed from each of the inputs in the framework of dependent inputs. We apply the proposed approach to a terrain-traversability estimation method we proposed in prior work, which is based on multi-task GP regression, and we validate this implementation experimentally using a rover on a Mars-analogue terrain.
Resumo:
We present a Bayesian sampling algorithm called adaptive importance sampling or population Monte Carlo (PMC), whose computational workload is easily parallelizable and thus has the potential to considerably reduce the wall-clock time required for sampling, along with providing other benefits. To assess the performance of the approach for cosmological problems, we use simulated and actual data consisting of CMB anisotropies, supernovae of type Ia, and weak cosmological lensing, and provide a comparison of results to those obtained using state-of-the-art Markov chain Monte Carlo (MCMC). For both types of data sets, we find comparable parameter estimates for PMC and MCMC, with the advantage of a significantly lower wall-clock time for PMC. In the case of WMAP5 data, for example, the wall-clock time scale reduces from days for MCMC to hours using PMC on a cluster of processors. Other benefits of the PMC approach, along with potential difficulties in using the approach, are analyzed and discussed.
Resumo:
In this paper, we examine approaches to estimate a Bayesian mixture model at both single and multiple time points for a sample of actual and simulated aerosol particle size distribution (PSD) data. For estimation of a mixture model at a single time point, we use Reversible Jump Markov Chain Monte Carlo (RJMCMC) to estimate mixture model parameters including the number of components which is assumed to be unknown. We compare the results of this approach to a commonly used estimation method in the aerosol physics literature. As PSD data is often measured over time, often at small time intervals, we also examine the use of an informative prior for estimation of the mixture parameters which takes into account the correlated nature of the parameters. The Bayesian mixture model offers a promising approach, providing advantages both in estimation and inference.