948 resultados para Non-adherent system
Resumo:
In this paper, we deal with the research of a proposed mathematical model of energy harvesting, including nonlinearities in the piezoelectric coupling and a non-ideal force of excitation. We showed using numerical simulations to analysis of the dynamic responses that, the power harvested was influenced by the nonlinear vibrations of the structure, as well as by the influence of the non-linearities in the piezoelectric coupling. We concluded through of the numerical results that the limited energy source was interacting with the system. Thus, the increasing of the voltage in DC motor led the system produce a good power response, especially in high-energy orbits in the resonance region, but the Sommerfeld effect occurs in the system and a chaotic behavior was found in the post-resonance region. So the power harvested along the time decreases because occurs loses of energy due the interaction between energy source and structure. Keeping the energy harvested constant over time is essential to make possible the use of energy harvesting systems in real applications. To achieve this objective, we applied a control technique in order to stabilize the chaotic system in a periodic stable orbit. We announced that the results were satisfactory and the control maintained the system in a stable condition. © 2012 Foundation for Scientific Research and Technological Innovation.
Resumo:
In this paper the dynamics of the ideal and non-ideal Duffing oscillator with chaotic behavior is considered. In order to suppress the chaotic behavior and to control the system, a control signal is introduced in the system dynamics. The control strategy involves the application of two control signals, a nonlinear feedforward control to maintain the controlled system in a periodic orbit, obtained by the harmonic balance method, and a state feedback control, obtained by the state dependent Riccati equation, to bring the system trajectory into the desired periodic orbit. Additionally, the control strategy includes an active magnetorheological damper to actuate on the system. The control force of the damper is a function of the electric current applied in the coil of the damper, that is based on the force given by the controller and on the velocity of the damper piston displacement. Numerical simulations demonstrate the effectiveness of the control strategy in leading the system from any initial condition to a desired orbit, and considering the mathematical model of the damper (MR), it was possible to control the force of the shock absorber (MR), by controlling the applied electric current in the coils of the damper. © 2012 Foundation for Scientific Research and Technological Innovation.
Resumo:
Includes bibliography
Resumo:
This work considers the vibrating system that consists of a snap-through truss absorber coupled to an oscillator under excitation of an electric motor with an eccentricity and limited power, characterizing a non-ideal oscillator. It is aimed to use the non-linearity and quasi-zero stiffness of absorber (snap-through truss absorber) to obtain a significantly attenuation the jump phenomenon. There is also an interest to exhibit the reduction of Sommerfeld effect, to confirm the saturation phenomenon occurrence and show the power transfer in a non-linear structure, evidencing the pumping energy. As shown by simulations in this work, this absorber allows the energy pumping before and during the jump phenomenon, decreasing the higher amplitudes of considered system. Additionally, the occurrence of saturation phenomenon due use of snap-through truss absorber is verified. The analysis of parameter uncertainties was introduced. Sensitivity of system with parametric errors demonstrated a trustable system. © IMechE 2012.
Resumo:
This paper, a micro-electro-mechanical systems (MEMS) with parametric uncertainties is considered. The non-linear dynamics in MEMS system is demonstrated with a chaotic behavior. We present the linear optimal control technique for reducing the chaotic movement of the micro-electromechanical system with parametric uncertainties to a small periodic orbit. The simulation results show the identification by linear optimal control is very effective. © 2013 Academic Publications, Ltd.
Resumo:
Piezoelectric array transducers applications are becoming usual in the ultrasonic non-destructive testing area. However, the number of elements can increase the system complexity, due to the necessity of multichannel circuitry and to the large amount of data to be processed. Synthetic aperture techniques, where one or few transmission and reception channels are necessary, and the data are post-processed, can be used to reduce the system complexity. Another possibility is to use sparse arrays instead of a full-populated array. In sparse arrays, there is a smaller number of elements and the interelement spacing is larger than half wavelength. In this work, results of ultrasonic inspection of an aluminum plate with artificial defects using guided acoustic waves and sparse arrays are presented. Synthetic aperture techniques are used to obtain a set of images that are then processed with an image compounding technique, which was previously evaluated only with full-populated arrays, in order to increase the resolution and contrast of the images. The results with sparse arrays are equivalent to the ones obtained with full-populated arrays in terms of resolution. Although there is an 8 dB contrast reduction when using sparse arrays, defect detection is preserved and there is the advantage of a reduction in the number of transducer elements and data volume. © 2013 Brazilian Society for Automatics - SBA.
Resumo:
Haptic information, provided by a non-rigid tool (i.e., an anchor system), can reduce body sway in individuals who perform a standing postural task. However, it was not known whether or not continuous use of the anchor system would improve postural control after its removal. Additionally, it was unclear as to whether or not frequency of use of the anchor system is related to improved control in older adults. The present study evaluated the effect of the prolonged use of the anchor system on postural control in healthy older individuals, at different frequencies of use, while they performed a postural control task (semi-tandem position). Participants were divided into three groups according to the frequency of the anchor system's use (0%, 50%, and 100%). Pre-practice phase (without anchor) was followed by a practice phase (they used the anchor system at the predefined frequency), and a post-practice phase (immediate and late-without anchor). All three groups showed a persistent effect 15. min after the end of the practice phase (immediate post-practice phase). However, only the 50% group showed a persistent effect in the late post-practice phase (24. h after finishing the practice phase). Older adults can improve their postural control by practicing the standing postural task, and use of the anchor system limited to half of their practice time can provide additional improvement in their postural control. © 2013 Elsevier B.V.
Resumo:
We study the non-Markovianity of the dynamics of open quantum systems, focusing on the cases of independent and common environmental interactions. We investigate the degree of non-Markovianity quantified by two distinct measures proposed by Luo, Fu, and Song and Breuer, Laine, and Pillo. We show that the amount of non-Markovianity, for a single qubit and a pair of qubits, depends on the quantum process, the proposed measure, and whether the environmental interaction is collective or independent. In particular, we demonstrate that while the degree of non-Markovianity generally increases with the number of qubits in the system for independent environments, the same behavior is not always observed for common environments. In the latter case, our analysis suggests that the amount of non-Markovianity could increase or decrease depending on the properties of the considered quantum process. © 2013 American Physical Society.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Deer species of the genus Mazama show significant inter and intraspecific chromosomal variation due to the occurrence of rearrangements and B chromosomes. Given that carriers of aneuploidies and structural rearrangements often show anomalous chromosome pairings, we here performed a synaptonemal complex analysis to study chromosome pairing behavior in a red brocket deer (Mazama americana) individual that is heterozygous for a Robertsonian translocation, is a B chromosome carrier, and has a multiple sex chromosome system (XY1Y2). The synaptonemal complex in spermatocytes showed normal chromosome pairings for all chromosomes, including the autosomal and sex trivalents. The electromicrographs showed homology among B chromosomes since they formed bivalents, but they also appeared as univalents, indicating their anomalous behavior and non-Mendelian segregation. Thus, synaptonemal complex analysis is a useful tool to evaluate the role of B chromosomes and rearrangements during meiosis on the intraspecific chromosomal variation that is observed in the majority of Mazama species. © FUNPEC-RP.
Resumo:
We consider the non-Markovian Langevin evolution of a dissipative dynamical system in quantum mechanics in the path integral formalism. After discussing the role of the frequency cutoff for the interaction of the system with the heat bath and the kernel and noise correlator that follow from the most common choices, we derive an analytic expansion for the exact non-Markovian dissipation kernel and the corresponding colored noise in the general case that is consistent with the fluctuation-dissipation theorem and incorporates systematically non-local corrections. We illustrate the modifications to results obtained using the traditional (Markovian) Langevin approach in the case of the exponential kernel and analyze the case of the non-Markovian Brownian motion. We present detailed results for the free and the quadratic cases, which can be compared to exact solutions to test the convergence of the method, and discuss potentials of a general nonlinear form. © 2013 Elsevier B.V. All rights reserved.
Resumo:
As células-tronco adultas (CTA) são células multipotentes e não especializadas encontradas na medula óssea, no sangue periférico, na córnea, na retina, no cérebro, no músculo esquelético, na polpa dental, no fígado, no pâncreas, no epitélio da pele, no sistema digestivo, no cordão umbilical e na placenta. Estas células podem se renovar e reproduzir indefinidamente e, sob certos estímulos, se transformar em células especializadas de diferentes tecidos ou órgãos. O presente trabalho tem como objetivo a obtenção de CTA a partir de tecido epitelial de roedores silvestres de espécies diferentes (Oecomys concolor - um exemplar fêmea, Proechimys roberti - dois exemplares machos, Hylaeamys megacephalus - dois exemplares machos). A metodologia para isolamento e cultivo in vitro de amostras do tecido epitelial foi estabelecida, a partir de protocolos já descritos, avaliando aspectos morfológicos, estabilidade genômica, contagem e análise da viabilidade celular, potencial clonogênico e indução de diferenciação em osteócitos, condrócitos e adipócitos. Todas essas análises foram feitas pós-criopreservação das culturas. As CTA foram caracterizadas como população homogênea de células que proliferam in vitro, como células aderentes à superfície do plástico, tendo morfologia semelhante a fibroblastos e formato fusiforme, com alta taxa de crescimento e proliferação celular por várias passagens sucessivas, onde a autorrenovação celular foi avaliada por ensaios clonogênicos. Na análise para examinar a estabilidade genômica na P3, todas as amostras apresentaram cariótipo com número diplóide normal e estável. A metodologia empregada nos ensaios para diferenciação das CTA em linhagens osteogênica, condrogênica e adipogênica, apresentou resultados satisfatórios, onde as células mostraram a marcação desejada através das colorações Alizarin Red S, Alcian Blue e Oil Red O, respectivamente. Todas as amostras testadas apresentam capacidade de proliferação e diversidade de diferenciação, sendo potencialmente fornecedores de CTA provenientes da pele e podendo ser utilizados como organismos modelos de estudos em CT.
Resumo:
In this paper we present a set of generic results on Hamiltonian non-linear dynamics. We show the necessary conditions for a Hamiltonian system to present a non-twist scenario and from that we introduce the isochronous resonances. The generality of these resonances is shown from the Hamiltonian given by the Birkhof-Gustavson normal form, which can be considered a toy model, and from an optic system governed by the non-linear map of the annular billiard. We also define a special kind of transport barrier called robust torus. The meanders and shearless curves are also presented and we show the most robust shearless barrier associated with the rotation numbers.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)