948 resultados para New Jersey--Remote-sensing maps.
Resumo:
The New York Metropolitan region is one of the most populous urban agglomerations in the world, and the single largest in North America.[1] It is also one of the most prominent economic centers, with New York City at the epicenter of its growth. With the entire region growing rapidly over the last decade, it is essential to analyze the socio-economic changes in order to understand the impact it has on commercial real estate. With its focus on housing rentals, this study aims to highlight housing costs as a function of rapid transit over time.
Resumo:
This report evaluates the use of remotely sensed images in implementing the Iowa DOT LRS that is currently in the stages of system architecture. The Iowa Department of Transportation is investing a significant amount of time and resources into creation of a linear referencing system (LRS). A significant portion of the effort in implementing the system will be creation of a datum, which includes geographically locating anchor points and then measuring anchor section distances between those anchor points. Currently, system architecture and evaluation of different data collection methods to establish the LRS datum is being performed for the DOT by an outside consulting team.
Resumo:
Il versante sinistro delle Gole di Scascoli (BO) è caratterizzato da una marcata tendenza evolutiva per crollo e ribaltamento. Negli ultimi 25 anni si sono verificati eventi parossistici con volumi di roccia coinvolti rispettivamente di 7000 m3, 20000 m3 e 35000 m3. Il sito è di grande rilevanza a causa del forte fattore di rischio rappresentato per la strada di fondovalle ad esso adiacente. Il lavoro di tesi è stato finalizzato allo studio dei fenomeni di versante di una parete rocciosa inaccessibile nota in letteratura come “ex-Mammellone 1” mediante tecniche di telerilevamento quali TLS (Terrestrial Laser Scanning) e CRP (Close Range Photogrammetry) al fine affiancare il rilievo geomeccanico soggettivo dell’area svolto nel 2003 da ENSER Srl in seguito ai fenomeni di crollo del 2002. Lo sviluppo di tecnologie e metodi innovativi per l’analisi territoriale basata sull’impiego di UAV (Unmanned Aerial Vehicle, meglio noti come Droni), associata alle tecniche di fotogrammetria digitale costituisce un elemento di notevole ausilio nelle pratiche di rilevamento in campo di sicurezza e tempi di esecuzione. Il lavoro ha previsto una prima fase di rilevamento areo-fotogrammetrico mediante strumentazione professionale e amatoriale, a cui è seguita l’elaborazione dei rispettivi modelli. I diversi output sono stati confrontati dal punto di vista geomorfologico, geometrico, geomeccanico e di modellazione numerica di caduta massi. Dal lavoro è stato possibile indagare l’evoluzione morfologica del sito in esame negli ultimi 10 anni, confrontare diversi metodi di rilevamento e analisi dati, sperimentare la robustezza e ripetibilità geometrica del metodo fotogrammetrico per il rilievo di fronti rocciosi e mettere a punto un metodo semiautomatico di individuazione e analisi delle giaciture delle discontinuità.
Resumo:
Interactions between surface waves and sea ice are thought to be an important, but poorly understood, physical process in the atmosphere-ice-ocean system. In this work, airborne scanning lidar was used to observe ocean waves propagating into the marginal ice zone (MIZ). These represent the first direct spatial measurements of the surface wave field in the polar MIZ. Data were compared against two attenuation models, one based on viscous dissipation and one based on scattering. Both models were capable of reproducing the measured wave energy. The observed wavenumber dependence of attenuation was found to be consistent with viscous processes, while the spectral spreading of higher wavenumbers suggested a scattering mechanism. Both models reproduced a change in peak direction due to preferential directional filtering. Floe sizes were recorded using co-located visible imagery, and their distribution was found to be consistent with ice breakup by the wave field.
Resumo:
The New Jersey Meadowlands is a thirty square mile industrial wetland between New York City and the commercial district of East Rutherford, NJ. The place is both strange and fascinating; many mysteries are hidden between the reed grasses and scattered garbage. Often exposed to subjectivity, the Meadowlands is commonly perceived as a weird, polluted, industrial, and even an other-worldly space; few know its beauty. These differing perceptions create a challenge when thinking of a cohesive identity and sense of place in the marsh. Over time, the once pure landscape has suffered from infrastructural slices, illegal dumping, and environmental abuse, resulting in fragmented land areas along the Hackensack River’s edge. This thesis explores how to inhabit an ecologically devalued and residual landscape through ideas of place-making and re-connecting communities. Investigating the paradox of this massive urban landscape and capitalizing on the ecological and educational potential of the site, lends also to a challenge of converging modern and forgotten life. Designing a place-based ecological research community within this currently placeless environment, will engage the public, re-connect lost communities, and bring a sense of renewal to the marsh.
Resumo:
Shows cadastral and topographic data (land tracts with proprietors' names) in unurbanized areas.
Resumo:
June 2011 saw the first historic eruption of Nabro volcano, one of an ongoing sequence of eruptions in the Afar-Red Sea region since 2005. It halted air travel in northern Africa, contaminated food and water sources, and displaced thousands from their homes. Due to its remote location, little was known about this event in terms of the quantity of erupted products and the timing and mechanisms of their emplacement. Geographic isolation, previous quiescence and regional civil unrest meant that this volcano was effectively unmonitored at the time of eruption, and opportunities for field study are limited. Using free, publicly available satellite data, I examined rates of lava effusion and SO2 emission in order to quantify the amount of erupted products and understand the temporal evolution of the eruption, as well as explore what information can be gleaned about eruption mechanisms using remote sensing data. These data revealed a bimodal eruption, beginning with explosive activity marked by high SO2 emission totalling 1824 - 2299 KT, and extensive ash fall of 270 - 440 km2. This gave way to a period of rapid effusion, producing a ~17 km long lava flow, and a volume of ~22.1 x 106 m3. Mass balance between the SO2 and lava flows reveals no sulfur 'excess', suggesting that nearly all of the degassed magma was extruded. The 2011 eruption of Nabro lasted nearly 6 weeks, and may be considered the second largest historic eruption in Africa. Work such as this highlights the importance of satellite remote sensing for studying and monitoring volcanoes, particularly those in remote regions that may be otherwise inaccessible.
Resumo:
I utilized state the art remote sensing and GIS (Geographical Information System) techniques to study large scale biological, physical and ecological processes of coastal, nearshore, and offshore waters of Lake Michigan and Lake Superior. These processes ranged from chlorophyll a and primary production time series analysies in Lake Michigan to coastal stamp sand threats on Buffalo Reef in Lake Superior. I used SeaWiFS (Sea-viewing Wide Field-of-view Sensor) satellite imagery to trace various biological, chemical and optical water properties of Lake Michigan during the past decade and to investigate the collapse of early spring primary production. Using spatial analysis techniques, I was able to connect these changes to some important biological processes of the lake (quagga mussels filtration). In a separate study on Lake Superior, using LiDAR (Light Detection and Ranging) and aerial photos, we examined natural coastal erosion in Grand Traverse Bay, Michigan, and discussed a variety of geological features that influence general sediment accumulation patterns and interactions with migrating tailings from legacy mining. These sediments are moving southwesterly towards Buffalo Reef, creating a threat to the lake trout and lake whitefish breeding ground.
Resumo:
With recent advances in remote sensing processing technology, it has become more feasible to begin analysis of the enormous historic archive of remotely sensed data. This historical data provides valuable information on a wide variety of topics which can influence the lives of millions of people if processed correctly and in a timely manner. One such field of benefit is that of landslide mapping and inventory. This data provides a historical reference to those who live near high risk areas so future disasters may be avoided. In order to properly map landslides remotely, an optimum method must first be determined. Historically, mapping has been attempted using pixel based methods such as unsupervised and supervised classification. These methods are limited by their ability to only characterize an image spectrally based on single pixel values. This creates a result prone to false positives and often without meaningful objects created. Recently, several reliable methods of Object Oriented Analysis (OOA) have been developed which utilize a full range of spectral, spatial, textural, and contextual parameters to delineate regions of interest. A comparison of these two methods on a historical dataset of the landslide affected city of San Juan La Laguna, Guatemala has proven the benefits of OOA methods over those of unsupervised classification. Overall accuracies of 96.5% and 94.3% and F-score of 84.3% and 77.9% were achieved for OOA and unsupervised classification methods respectively. The greater difference in F-score is a result of the low precision values of unsupervised classification caused by poor false positive removal, the greatest shortcoming of this method.
Resumo:
The high cost of maize in Kenya is basically driven by East African regional commodity demand forces and agricultural drought. The production of maize, which is a common staple food in Kenya, is greatly affected by agricultural drought. However, calculations of drought risk and impact on maize production in Kenya is limited by the scarcity of reliable rainfall data. The objective of this study was to apply a novel hyperspectral remote sensing method to modelling temporal fluctuations of maize production and prices in five markets in Kenya. SPOT-VEGETATION NDVI time series were corrected for seasonal effects by computing the standardized NDVI anomalies. The maize residual price time series was further related to the NDVI seasonal anomalies using a multiple linear regression modelling approach. The result shows a moderately strong positive relationship (0.67) between residual price series and global maize prices. Maize prices were high during drought periods (i.e. negative NDVI anomalies) and low during wet seasons (i.e. positive NDVI anomalies). This study concludes that NDVI is a good index for monitoring the evolution of maize prices and food security emergency planning in Kenya. To obtain a very strong correlation for the relationship between the wholesale maize price and the global maize price, future research could consider adding other price-driving factors into the regression models.
Resumo:
Modifications in vegetation cover can have an impact on the climate through changes in biogeochemical and biogeophysical processes. In this paper, the tree canopy cover percentage of a savannah-like ecosystem (montado/dehesa) was estimated at Landsat pixel level for 2011, and the role of different canopy cover percentages on land surface albedo (LSA) and land surface temperature (LST) were analysed. A modelling procedure using a SGB machine-learning algorithm and Landsat 5-TM spectral bands and derived vegetation indices as explanatory variables, showed that the estimation of montado canopy cover was obtained with good agreement (R2 = 78.4%). Overall, montado canopy cover estimations showed that low canopy cover class (MT_1) is the most representative with 50.63% of total montado area. MODIS LSA and LST products were used to investigate the magnitude of differences in mean annual LSA and LST values between contrasting montado canopy cover percentages. As a result, it was found a significant statistical relationship between montado canopy cover percentage and mean annual surface albedo (R2 = 0.866, p < 0.001) and surface temperature (R2 = 0.942, p < 0.001). The comparisons between the four contrasting montado canopy cover classes showed marked differences in LSA (χ2 = 192.17, df = 3, p < 0.001) and LST (χ2 = 318.18, df = 3, p < 0.001). The highest montado canopy cover percentage (MT_4) generally had lower albedo than lowest canopy cover class, presenting a difference of −11.2% in mean annual albedo values. It was also showed that MT_4 and MT_3 are the cooler canopy cover classes, and MT_2 and MT_1 the warmer, where MT_1 class had a difference of 3.42 °C compared with MT_4 class. Overall, this research highlighted the role that potential changes in montado canopy cover may play in local land surface albedo and temperature variations, as an increase in these two biogeophysical parameters may potentially bring about, in the long term, local/regional climatic changes moving towards greater aridity.