907 resultados para Natural resources -- Remote sensing
Resumo:
The municipality of Petrolina, located in the semi-arid region of Brazil, is highlighted as an important agricultural growing region, however the irrigated areas have cleared natural vegetation inducing a loss of biodiversity. To analyze the contrast between these two ecosystems the large scale values of biomass production (BIO), evapotranspiration (ET) and water productivity (WP) were quantified. Monteithś equation was applied for estimating the absorbed photosynthetically active radiation (APAR), while the new SAFER (Simple Algorithm For Evapotranspiration Retrieving) algorithm was used to retrieve ET. The water productivity (WP) was analysed by the ratio of BIO by ET at monthly time scale with four bands of MODIS satellite images together with agrometeorological data for the year of 2011. The period with the highest water productivity values were from March to April in the rainy period for both irrigated and not irrigated conditions. However the largest ET rates were in November for irrigated crops and April for natural vegetation. More uniformity of the vegetation and water variables occurs in natural vegetation, evidenced by the lower values of standard deviation when comparing to irrigated crops, due to the different crop stages, cultural and irrigation managements. The models applied with MODIS satellite images on a large scale are considered to be suitable for water productivity assessments and for quantifying the effects of increasing irrigated areas over natural vegetation on regional water consumption in situations of quick changing land use pattern. © 2012 SPIE.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
The water column overlying the submerged aquatic vegetation (SAV) canopy presents difficulties when using remote sensing images for mapping such vegetation. Inherent and apparent water optical properties and its optically active components, which are commonly present in natural waters, in addition to the water column height over the canopy, and plant characteristics are some of the factors that affect the signal from SAV mainly due to its strong energy absorption in the near-infrared. By considering these interferences, a hypothesis was developed that the vegetation signal is better conserved and less absorbed by the water column in certain intervals of the visible region of the spectrum; as a consequence, it is possible to distinguish the SAV signal. To distinguish the signal from SAV, two types of classification approaches were selected. Both of these methods consider the hemispherical-conical reflectance factor (HCRF) spectrum shape, although one type was supervised and the other one was not. The first method adopts cluster analysis and uses the parameters of the band (absorption, asymmetry, height and width) obtained by continuum removal as the input of the classification. The spectral angle mapper (SAM) was adopted as the supervised classification approach. Both approaches tested different wavelength intervals in the visible and near-infrared spectra. It was demonstrated that the 585 to 685-nm interval, corresponding to the green, yellow and red wavelength bands, offered the best results in both classification approaches. However, SAM classification showed better results relative to cluster analysis and correctly separated all spectral curves with or without SAV. Based on this research, it can be concluded that it is possible to discriminate areas with and without SAV using remote sensing. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
The major contribution of this paper relates to the practical advantages of combining Ground Control Points (GCPs), Ground Control Lines (GCLs) and orbital data to estimate the exterior orientation parameters of images collected by CBERS-2B (China-Brazil Earth Resources Satellite) HRC (High-resolution Camera) and CCD (High-resolution CCD Camera) sensors. Although the CBERS-2B is no longer operational, its images are still being used in Brazil, and the next generations of the CBERS satellite will have sensors with similar technical features, which motivates the study presented in this paper. The mathematical models that relate the object and image spaces are based on collinearity (for points) and coplanarity (for lines) conditions. These models were created in an in-house developed software package called TMS (Triangulation with Multiple Sensors) with multi-feature control (GCPs and GCLs). Experiments on a block of four CBERS-2B HRC images and on one CBERS-2B CCD image were performed using both models. It was observed that the combination of GCPs and GCLs provided better bundle block adjustment results than conventional bundle adjustment using only GCPs. The results also demonstrate the advantages of using primarily orbital data when the number of control entities is reduced. © 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).
Resumo:
Incluye Bibliografía
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
El presente estudio tiene por objeto relacionar la problemática del desarrollo sostenible con la explotación de gas natural no convencional a nivel general y en específico para los países seleccionados