993 resultados para Natural Biological Control
Resumo:
Cotton cultivars expressing Cry proteins are widely used to control lepidopteran pests. The effects of transgenic plants containing insecticidal Cry proteins on non-target species must be comprehended for a better and rational use of this technology for pest management. We investigated the influence of the Bt cotton cultivars NuOPAL and FM 975 on biological parameters of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), a non-target pest of Bt cotton cultivars and on its parasitoid Encarsia desantisi Viggiani (Hymenoptera: Aphelinidae). The experiments were conducted in a climatized room, and the non-transgenic near isolines were used for rearing whiteflies as control hosts. The effects of the Bt cotton cultivars on the period of embryonic and larval development and the percentage of adult emergence of B. tabaci were assessed. The period required for embryonic, larval, and pupal development and the percentage of emergence and longevity of E. desantisi females were determined using Bt cotton-fed and non-Bt cotton-fed B. tabaci as hosts. Both Bt cotton cultivars resulted in a decrease of approximately 20% of adult emergence of B. tabaci. Differently, an increase of approximately 10% of adult emergence of E. desantisi was observed for parasitoids that used hosts fed with both Bt cotton cultivars. However, female parasitoid longevity decreased when their hosts were fed on Bt cotton cultivars. Our data suggest that the use of Bt cotton cultivars in association with the biological control agent E. desantisi could be functional for the management of B. tabaci in Bt cotton crops.
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Pós-graduação em Ciências Biológicas (Zoologia) - IBRC
Resumo:
Pós-graduação em Agronegócio e Desenvolvimento - Tupã
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Entomologia Agrícola) - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Human activities are altering the concentrations of ozone in the troposphere and hence in the incidence of ultraviolet-B (UV-B) on Earth’s surface. Although representing only five percent of UV-B radiation striking the Earth's surface, this radiation has the potential to cause effects on biologically active molecules. Sensitivity to UV-B radiation is one of the limitations of biological control of plant pathogens in the field. The objectives of this work were to evaluate the effects of UV-B on several isolates of Clonostachys rosea, and the ability of an isolate of C. rosea, previously selected for its tolerant to UV-B radiation, to control Botrytis cinerea on strawberry leaves in controlled conditions (strawberry leaf discs). The germination of C. rosea conidia was inversely proportional to the irradiance. The most tolerant strain (LQC62) had relative germination of about 60% after irradiation of 4.2kJ/m2, and this strain was selected to be used in the subsequent studies. The data showed that even with exposure to UV-B radiation, C. rosea LQC62 controlled the pathogen. Conidial concentrations of strain LQC62 above 105 conidia/ml showed higher tolerance to UV-B radiation and increased ability to control more than 75% of the B. cinerea even with exposure to radiation. According to our results, in addition to showing less growth under UV-B, conidia of C. rosea had lower antagonistic ability. Further studies are needed to observe the tolerance of B. cinerea conidia to UV-B radiation and thereby prove that an environment with increased UV-B radiation may be favoring the pathogen due to a lower ability of C. rosea to control the pathogen in conditions of increased UV-B.
Resumo:
Sclerotia of Sclerotinia sclerotiorum (Ss) can survive for long time in soil and are the main inoculum source of the white mold disease. An alternative for reducing this inoculum is the use of parasites, such as Coniothyrium minitans (Cm). We evaluated the potential of Cm isolates for the biological control of Ss in beans. The effect of the temperature on the growth of 15 isolated of Cm was evaluated in vitro. The hyperparasitism ability of Cm was evaluated in soil infested with sclerotia and conditioned in pots. The infested soil was treated with conidia suspension of the antagonists, fluazinan or sterile distilled water. After seven days at 20°C, the sclerotia were removed from soil and placed inside Petri dishes over bean leaves previously disinfested. The germination and parasitism of sclerotia were evaluated after 7 to 10 days. To evaluate the apothecia emission, soil infested with sclerotia of Ss and treated as described was maintained at 18°C and the number of emerged apothecia was counted up to 84 days after inoculation. The emergence of bean plants in soil infested with sclerotia and mycelium of the pathogen and treated as described was evaluated in greenhouse. The ideal temperature for growth of Cm isolates varied from 18 to 19°C and at 30-35°C they were complete inhibited. The isolates of Cm promoted less than 10% of reduction in viability of the sclerotia, but they significantly reduced the emission of apothecia. Two isolates increased the emergence of plants in relation to the inoculated check, but was significantly lower than the non-inoculated check. Field tests will be conduct to confirm the potential of the selected isolates to reduce the inoculum source of the pathogen.
Resumo:
The present study was aimed to evaluate different (semi-solid) media for the production of Metarhizium anisopliae and Beauveria bassiana propagules, and to evaluate the tolerance of these propagules to ultraviolet radiation and temperature. The experiments were performed at the Biological Control Laboratory of the Instituto Biológico at Campinas, São Paulo, Brazil. For both fungi, 6 repetitions were performed for each of the 17 treatments: corn starch, full rice, parboiled rice, type-1 rice, type-2 rice, oat flakes, canjiquinha [grits], wheat flour, raw cassava flour, yellow corn flour, special wheat flour, corn flour, corn in grains, cassava starch, soy in grains, crushed wheat, and turf. The viability analysis was done in plastic plates containing BDA. For the bioassays involving exposure to ultraviolet light and temperature, BDA was also used for viability analysis, and each treatment was exposed to the UV radiation for 0, 25 and 50 seconds, the temperature exposure being at 20, 25, 30 and 35º C. Using a Potter tower, 2 mL of fungus suspension from each treatment was inoculated to the Diatraea saccharalis caterpillars. Regarding the sporulation, the largest concentrations of M. anisopliae and B. bassiana were found for the treatments with parboiled rice, type-1 rice, type-2 rice, yellow corn flour, corn flour and crushed wheat. The viability of all treatments was superior to 94.00%. Also, the longer the duration of the exposition to the UV, the smaller the number of fertile conidia. At 35o C, a significant loss of conidia viability was observed, and all the treatments presented some level of virulence.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Entomologia Agrícola) - FCAV
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA