892 resultados para Nanotoxicity, Genotoxicity, Zinc oxide nanoparticles, respiratory epithelia, DNA damages


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In inflammatory states, nitric oxide (.NO) may be synthesized from precursor L-arginine via inducible .NO synthase (iNOS) in large amounts for prolonged periods of time. When .NO acts as an effector molecule under these conditions, it may be toxic to cells by inhibition of iron-containing enzymes or initiation of DNA single-strand breaks. In contrast to molecular targets of .NO, considerably less is known regarding mechanisms by which cells become resistant to .NO. Metallothionein (MT), the major protein thiol induced in cells exposed to cytokines and bacterial products, is capable of forming iron-dinitrosyl thiolates in vitro. Therefore, we tested the hypothesis that overexpression of MT reduces the sensitivity of NIH 3T3 cells to the .NO donor, S-nitrosoacetylpenicillamine (SNAP), and to .NO released from cells (NIH 3T3-DFG-iNOS) after infection with a retroviral vector expressing human iNOS gene. There was a 4-fold increase in MT in cells transfected with the mouse MT-1 gene (NIH 3T3/MT) compared to cells transfected with the promoter-free inverted gene (NIH 3T3/TM). NIH 3T3/MT cells were more resistant than NIH 3T3/TM cells to the cytotoxic effects of SNAP (0.1-1.0 mM) or .NO released from NIH 3T3-DFG-iNOS cells. A brief (1 h) exposure to 10 mM SNAP caused DNA single-strand breaks that were 9-fold greater in NIH 3T3/TM compared to NIH 3T3/MT cells. Electron paramagnetic resonance spectroscopy of NIH 3T3 cells revealed a greater peak at g = 2.04 (e.g., iron-dinitrosyl complex) in NIH 3T3/MT than NIH 3T3/TM cells. These data are consistent with a role for cytoplasmic MT in interacting with .NO and reducing .NO-induced cyto- and nuclear toxicity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A study on the preparation of thin films of ZSM-5 and BETA zeolites, and a SAPO-5 silicoaluminophosphate, supported on cordierite honeycomb monoliths by in situ synthesis was carried out for their use as catalyst supports. Furthermore γ-Al2O3 was also coated onto a cordierite honeycomb monolith by a dip-coating method for use as a standard support. Structured monolithic catalysts were prepared by impregnation of the aforementioned coated monoliths with polymer-protected Pd nanoparticles. The monolithic catalysts have been tested for the total oxidation of naphthalene (100 ppm, GHSV 1220 h−1). From the combined use of the zeolite with polymer-protected nanoparticles, enhanced catalytic properties have been found for the total abatement of naphthalene. The Pd/MBETA and Pd/MZSM-5 catalytic monoliths have shown excellent activity with a high degree of stability, even after undergoing accelerated ageing experiments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Palladium nanoparticles supported on graphene platelets have been efficiently used as catalyst in the Suzuki–Miyaura coupling between aryl bromides and potassium aryltrifluoroborates using 0.1 mol% of Pd and potassium carbonate as base in MeOH/H2O as solvent at 80 °C. The reaction can be performed using conventional and microwave heating showing the catalyst high reusability, particularly with microwaves, where lower aggregation of Pd nanoparticles has been observed. A dissolution/re-deposition catalytic mechanism is proposed, based on the fact that palladium leaching to the solution is detected under microwave irradiation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pd nanoparticles have been synthesized over carbon nanotubes (CNT) and graphite oxide (GO) by reduction with ethylene glycol and by conventional impregnation method. The catalysts were tested on the chemoselective hydrogenation of p-chloronitrobenzene and the effect of the synthesis method and surface chemistry on their catalytic performance was evaluated. The catalysts were characterized by N2 adsorption/desorption isotherms at 77 K, TEM, powder X-ray diffraction, thermogravimetry, infrared and X-ray photoelectron spectroscopy and ICP-OES. It was observed that the synthesis of Pd nanoparticles employing ethylene glycol resulted in metallic palladium particles of smaller size compared to those prepared by the impregnation method and similar for both supports. The presence of oxygen groups on the support surface favored the activity and diminished the selectivity. It seems that ethylene glycol reacted with the surface groups of GO, this favoring the selectivity. The activity was higher over the CNT-based catalysts and both catalysts prepared by reduction in ethylene glycol were quite stable upon recycling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel nanocomposite of iron oxide and silicate, prepared through a reaction between a solution of iron salt and a dispersion of Laponite clay, was used as a catalyst for the photoassisted Fenton degradation of azo-dye Orange II. This catalyst is much cheaper than the Nafion-based catalysts, and our results illustrate that it can significantly accelerate the degradation of Orange II under the irradiation of UV light (lambda = 254 nm). An advantage of the catalyst is its long-term stability that was confirmed through using the catalyst for multiple runs in the degradation of Orange II. The effects of the H2O2 molar concentration, solution pH, wavelength and power of the LTV light, catalyst loading, and initial Orange II concentration on the degradation of Orange 11 were studied in detail. In addition, it was also found that discoloration of Orange 11 undergoes a faster kinetics than mineralization of Orange II and 75% total organic carbons of 0.1 mM Orange II can be eliminated after 90 min in the presence of 1.0 g of Fe-nanocomposite/L, 4.8 mM H2O2, and 1 x 8W UVC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: To evaluate the efficacy of supplementation with zinc and vitamin A in Indigenous children hospitalised with acute lower respiratory infection (ALRI). Design: Randomised controlled, 2-by-2 factorial trial of supplementation with zinc and vitamin A. Setting and participants: 187 Indigenous children aged < 11 years hospitalised with 215 ALRI episodes at Alice Springs Hospital (April 2001 to July 2002). Interventions: Vitamin A was administered on Days 1 and 5 of admission at a dose of 50 000 IU (infants under 12 months), or 100 000 IU; and zinc sulfate was administered daily for 5 days at a daily dose of 20 mg (infants under 12 months) or 40 mg. Main outcome measure: Time to clinical recovery from fever and tachypnoea, duration of hospitalisation, and readmission for ALRI within 120 days. Results: There was no clinical benefit of supplementation with vitamin A, zinc or the two combined, with no significant difference between zinc and no-zinc, vitamin A and no-vitamin A or zinc + vitamin A and placebo groups in time to resolution of fever or tachypnoea, or duration of hospitalisation. Instead, we found increased morbidity; children given zinc had increased risk of readmission for ALRI within 120 days (relative risk, 2.4; 95% CI, 1.003–6.1). Conclusion: This study does not support the use of vitamin A or zinc supplementation in the management of ALRI requiring hospitalisation in Indigenous children living in remote areas. Even in populations with high rates of ALRI and poor living conditions, vitamin A and zinc therapy may not be useful. The effect of supplementation may depend on the prevalence of deficiency of these micronutrients in the population.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bacteriophage T7 DNA primase recognizes 5'-GTC-3' in single-stranded DNA. The primase contains a single Cys4 zinc-binding motif that is essential for recognition. Biochemical and mutagenic analyses suggest that the Cys4 motif contacts cytosine of 5'-GTC-3' and may also contribute to thymine recognition. Residues His33 and Asp31 are critical for these interactions. Biochemical analysis also reveals that T7 primase selectively binds CTP in the absence of DNA. We propose that bound CTP selects the remaining base G, of 5'-GTC-3', by base pairing. Our deduced mechanism for recognition of ssDNA by Cys4 motifs bears little resemblance to the recognition of trinucleotides of double-stranded DNA by Cys2His2 zinc fingers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two colinear bacteriophage T7 gene 4 proteins provide helicase and primase functions in vivo. T7 primase differs from T7 helicase by an additional 63 residues at the amino terminus. This terminal domain contains a zinc-binding motif which mediates an interaction with the basic primase recognition sequence 3'-CTG-5'. We have generated a chimeric primase in which the 81 amino-terminal residues are derived from the primase of phage T3 and the 484 carboxyl-terminal residues are those of phage T7 helicase. The amino-terminal domain of T3 primase is 50% homologous with that of T7 primase. The resulting T3/T7 chimeric protein is a functional primase in vivo. While the primase activity of the purified protein is about one-third that of T7 primase, the recognition sites used and the oligoribonucleotides synthesized from these sites are identical. We conclude that the residues responsible for the interaction with the sequence 3'-CTG-5' are conserved between the chimeric and T7 proteins.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It has been recognised for some time that a full code of amino acid-based recognition of DNA sequences would be useful. Several approaches, which utilise small DNA binding motifs called zinc fingers, are presently employed. None of the current approaches successfully combine a combinatorial approach to the elucidation of a code with a single stage high throughput screening assay. The work outlined here describes the development of a model system for the study of DNA protein interactions and the development of a high throughput assay for detection of such interactions. A zinc finger protein was designed which will bind with high affinity and specificity to a known DNA sequence. For future work it is possible to mutate the region of the zinc finger responsible for the specificity of binding, in order to observe the effect on the DNA / protein interactions. The zinc finger protein was initially synthesised as a His tagged product. It was not possible however to develop a high throughput assay using the His tagged zinc finger protein. The gene encoding the zinc finger protein was altered and the protein synthesised as a Glutathione S-Transferase (GST) fusion product. A successful assay was developed using the GST protein and Scintillation Proximity Assay technology (Amersham Pharmacia Biotech). The scintillation proximity assay is a dynamic assay that allows the DNA protein interactions to be studied in "real time". This assay not only provides a high throughput method of screening zinc finger proteins for potential ligands but also allows the effect of addition of reagents or competitor ligands to be monitored.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The affinity isolation of pre-purified plasmid DNA (pDNA) from model buffer solutions using native and poly(ethylene glycol) (PEG) derivatized zinc finger–GST (Glutathione-S-Transferase) fusion protein was examined in PEG–dextran (DEX) aqueous two-phase systems (ATPSs). In the absence of pDNA, partitioning of unbound PEGylated fusion protein into the PEG-rich phase was confirmed with 97.5% of the PEGylated fusion protein being detected in the PEG phase of a PEG 600–DEX 40 ATPS. This represents a 1322-fold increase in the protein partition coefficient in comparison to the non-PEGylated protein (Kc = 0.013). In the presence of pDNA containing a specific oligonucleotide recognition sequence, the zinc finger moiety of the PEGylated fusion protein bound to the plasmid and steered the complex to the PEG-rich phase. An increase in the proportion of pDNA that partitioned to the PEG-rich phase was observed as the concentration of PEGylated fusion protein was increased. Partitioning of the bound complex occurred to such an extent that no DNA was detected by the picogreen assay in the dextran phase. It was also possible to partition pDNA using a non-PEGylated (native) zinc finger–GST fusion protein in a PEG 1000–DEX 500 ATPS. In this case the native ligand accumulated mainly in the PEG phase. These results indicate good prospects for the design of new plasmid DNA purification methods using fusion proteins as affinity ligands.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The sequence-specific affinity chromatographic isolation of plasmid DNA from crude lysates of E. coli DH5α fermentations is addressed. A zinc finger-GST fusion protein that binds a synthetic oligonucleotide cassette containing the appropriate DNA recognition sequence is described. This cassette was inserted into the Smal site of pUC19 to enable the affinity isolation of the plasmid. It is shown that zinc finger-GST fusion proteins can bind both their DNA recognition sequence and a glutathione-derivatized solid support simultaneously. Furthermore, a simple procedure for the isolation of such plasmids from clarified cell lysates is demonstrated. Cell lysates were clarified by cross-flow Dean vortex microfiltration, and the permeate was incubated with zinc finger-GST fusion protein. The resulting complex was adsorbed directly onto glutathione-Sepharose. Analysis of the glutathione-eluted complex showed that plasmid DNA had been recovered, largely free from contamination by genomic DNA or bacterial cell proteins. © 2002 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new solid state organometallic route to embedded nanoparticle-containing inorganic materials is shown, through pyrolysis of metal-containing derivatives of cyclotriphosphazenes. Pyrolysis in air and at 800 °C of new molecular precursors gives individual single-crystal nanoparticles of SiP2O7, TiO2, P4O7, WP2O7 and SiO2, depending on the precursor used. High resolution transmission electron microscopy investigations reveal, in most cases, perfect single crystals of metal oxides and the first nanostructures of negative thermal expansion metal phosphates with diameters in the range 2–6 nm for all products. While all nanoparticles are new by this method, WP2O7 and SiP2O7 nanoparticles are reported for the first time. In situ recrystallization formation of nanocrystals of SiP2O7 was also observed due to electron beam induced reactions during measurements of the nanoparticulate pyrolytic products SiO2 and P4O7. The possible mechanism for the formation of the nanoparticles at much lower temperatures than their bulk counterparts in both cases is discussed. Degrees of stabilization from the formation of P4O7 affects the nanocrystalline products: nanoparticles are observed for WP2O7, with coalescing crystallization occurring for the amorphous host in which SiP2O7 crystals form as a solid within a solid. The approach allows the simple formation of multimetallic, monometallic, metal-oxide and metal phosphate nanocrystals embedded in an amorphous dielectric. The method and can be extended to nearly any metal capable of successful coordination as an organometallic to allow embedded nanoparticle layers and features to be deposited or written on surfaces for application as high mobility pyrophosphate lithium–ion cathode materials, catalysis and nanocrystal embedded dielectric layers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hybrid iron oxide-gold nanoparticles (HNPs) have shown potential in cancer therapy as agents for tumour ablation
and thermal switches for targeted drug release. Heat generation occurs by exploitation of the surface plasmon
resonance of the gold coating, which usually occurs at the maximum UV absorption wavelength. However, lasers
at such wavelength are often expensive and highly specialised. Here, we report the heating and monitoring of heat
dissipation of HNPs suspended in agar phantoms using a relatively inexpensive Ng: YAG pulsed 1064 nm laser source.
The particles experience heating of up to 40°C with a total area of heat dissipation up to 132.73 mm2 from the 1 mm
diameter irradiation point after 60 seconds. This work reports the potential and possible drawbacks of these particles
for translation into cancer therapy based on our findings.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sensitive detection of pathogens is critical to ensure the safety of food supplies and to prevent bacterial disease infection and outbreak at the first onset. While conventional techniques such as cell culture, ELISA, PCR, etc. have been used as the predominant detection workhorses, they are however limited by either time-consuming procedure, complicated sample pre-treatment, expensive analysis and operation, or inability to be implemented at point-of-care testing. Here, we present our recently developed assay exploiting enzyme-induced aggregation of plasmonic gold nanoparticles (AuNPs) for label-free and ultrasensitive detection of bacterial DNA. In the experiments, AuNPs are first functionalized with specific, single-stranded RNA probes so that they exhibit high stability in solution even under high electrolytic condition thus exhibiting red color. When bacterial DNA is present in a sample, a DNA-RNA heteroduplex will be formed and subsequently prone to the RNase H cleavage on the RNA probe, allowing the DNA to liberate and hybridize with another RNA strand. This continuously happens until all of the RNA strands are cleaved, leaving the nanoparticles ‘unprotected’. The addition of NaCl will cause the ‘unprotected’ nanoparticles to aggregate, initiating a colour change from red to blue. The reaction is performed in a multi-well plate format, and the distinct colour signal can be discriminated by naked eye or simple optical spectroscopy. As a result, bacterial DNA as low as pM could be unambiguously detected, suggesting that the enzyme-induced aggregation of AuNPs assay is very easy to perform and sensitive, it will significantly benefit to development of fast and ultrasensitive methods that can be used for disease detection and diagnosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of an ultrasensitive biosensor for the low-cost and on-site detection of pathogenic DNA could transform detection capabilities within food safety, environmental monitoring and clinical diagnosis. Herein, we present an innovative approach exploiting endonuclease-controlled aggregation of plasmonic gold nanoparticles (AuNPs) for label-free and ultrasensitive detection of bacterial DNA. The method utilizes RNA-functionalized AuNPs which form DNA-RNA heteroduplex structures through specific hybridization with target DNA. Once formed, the DNA-RNA heteroduplex is susceptible to RNAse H enzymatic cleavage of the RNA probe, allowing the target DNA to liberate and hybridize with another RNA probe. This continuously happens until all of the RNA probes are cleaved, leaving the nanoparticles unprotected and thus aggregated upon exposure to a high electrolytic medium. The assay is ultrasensitive, allowing the detection of target DNA at femtomolar level by simple spectroscopic analysis (40.7 fM and 2.45 fM as measured by UV-vis and dynamic light scattering (DLS), respectively). The target DNA spiked food matrix (chicken meat) is also successfully detected at a concentration of 1.2 pM (by UV-vis) or 18.0 fM (by DLS). In addition to the ultra-high sensitivity, the total analysis time of the assay is less than 3 hours, thus demonstrating its practicality for food analysis.