989 resultados para NORTH PACIFIC


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The co-occurrence of warm conveyor belts (WCBs), strongly ascending moist airstreams in extratropical cyclones, and stratospheric potential vorticity (PV) streamers, indicators for breaking Rossby waves on the tropopause, is investigated for a 21-yr period in the Northern Hemisphere using Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) data. WCB outflows and PV streamers are respectively identified as two- and three-dimensional objects and tracked during their life cycle. PV streamers are more frequent than WCB outflows and nearly 15% of all PV streamers co-occur with WCBs during their life cycle, whereas about 60% of all WCB outflows co-occur with PV streamers. Co-occurrences are most frequent over the North Atlantic and North Pacific in spring and winter. WCB outflows are often located upstream of the PV streamers and form earlier, indicating the importance of diabatic processes for downstream Rossby wave breaking. Less frequently, PV streamers occur first, leading to the formation of new WCBs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

δ¹³ CO₂ measured in Antarctic ice cores provides constraints on oceanic and terrestrial carbon cycle processes linked with millennial-scale changes in atmospheric CO₂. However, the interpretation of δ¹³ CO₂ is not straight-forward. Using carbon isotope-enabled versions of the LOVECLIM and Bern3D models, we perform a set of sensitivity experiments in which the formation rates of North Atlantic Deep Water (NADW), North Pacific Deep Water (NPDW), Antarctic Bottom Water (AABW), and Antarctic Intermediate Water (AAIW) are varied. We study the impact of these circulation changes on atmospheric δ¹³ CO₂ as well as on the oceanic δ¹³ CO₂ distribution. In general, we find that the formation rates of AABW, NADW, NPDW, and AAIW are negatively correlated with changes in δ¹³ CO₂: namely, strong oceanic ventilation decreases atmospheric δ¹³ CO₂. However, since large-scale oceanic circulation reorganizations also impact nutrient utilization and the Earth’s climate, the relationship between atmospheric δ¹³ CO₂ levels and ocean ventilation rate is not unequivocal. In both models atmospheric δ¹³ CO₂ is very sensitive to changes in AABW formation rates: increased AABW formation enhances the transport of low δ¹³ CO₂ waters to the surface and decreases atmospheric δ¹³ CO₂. By contrast, the impact of NADW changes on atmospheric δ¹³ CO₂ is less robust and might be model dependent. This results from complex interplay between global climate, carbon cycle, and the formation rate of NADW, a water body characterized by relatively high δ¹³ CO₂.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arctic Ocean freshening can exert a controlling influence on global climate, triggering strong feedbacks on ocean-atmospheric processes and affecting the global cycling of the world's oceans. Glacier-fed ocean currents such as the Alaska Coastal Current are important sources of freshwater for the Bering Sea shelf, and may also influence the Arctic Ocean freshwater budget. Instrumental data indicate a multiyear freshening episode of the Alaska Coastal Current in the early 21st century. It is uncertain whether this freshening is part of natural multidecadal climate variability or a unique feature of anthropogenically induced warming. In order to answer this, a better understanding of past variations in the Alaska Coastal Current is needed. However, continuous long-term high-resolution observations of the Alaska Coastal Current have only been available for the last 2 decades. In this study, specimens of the long-lived crustose coralline alga Clathromorphum nereostratum were collected within the pathway of the Alaska Coastal Current and utilized as archives of past temperature and salinity. Results indicate that coralline algal Mg/Ca ratios provide a 60 year record of sea surface temperatures and track changes of the Pacific Decadal Oscillation, a pattern of decadal-to-multidecadal ocean-atmosphere climate variability centered over the North Pacific. Algal Ba/Ca ratios (used as indicators of coastal freshwater runoff) are inversely correlated to instrumentally measured Alaska Coastal Current salinity and record the period of freshening from 2001 to 2006. Similar multiyear freshening events are not evident in the earlier portion of the 60 year Ba/Ca record. This suggests that the 21st century freshening of the Alaska Coastal Current is a unique feature related to increasing glacial melt and precipitation on mainland Alaska.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sulfur isotope ratios have been determined in 19 selected igneous rocks from Leg 126. The d34S of the analyzed rocks ranges from -0.1 â to +19.60 â. The overall variation in sulfur isotope composition of the rocks is caused by varying degrees of seawater alteration. Most of the samples are altered by seawater and only five of them are considered to have maintained their magmatic sulfur isotope composition. These samples are all from the backarc sites and have d34S values varying from +0.2 â to +1.6 â, of which the high d34S values suggest that the earliest magmas in the rift are more arc-like in their sulfur isotope composition than the later magmas. The d34S values from the forearc sites are similar to or heavier than the sulfur isotope composition of the present arc.