985 resultados para NONPARAMETRIC MODELS
Resumo:
Depth-averaged velocities and unit discharges within a 30 km reach of one of the world's largest rivers, the Rio Parana, Argentina, were simulated using three hydrodynamic models with different process representations: a reduced complexity (RC) model that neglects most of the physics governing fluid flow, a two-dimensional model based on the shallow water equations, and a three-dimensional model based on the Reynolds-averaged Navier-Stokes equations. Row characteristics simulated using all three models were compared with data obtained by acoustic Doppler current profiler surveys at four cross sections within the study reach. This analysis demonstrates that, surprisingly, the performance of the RC model is generally equal to, and in some instances better than, that of the physics based models in terms of the statistical agreement between simulated and measured flow properties. In addition, in contrast to previous applications of RC models, the present study demonstrates that the RC model can successfully predict measured flow velocities. The strong performance of the RC model reflects, in part, the simplicity of the depth-averaged mean flow patterns within the study reach and the dominant role of channel-scale topographic features in controlling the flow dynamics. Moreover, the very low water surface slopes that typify large sand-bed rivers enable flow depths to be estimated reliably in the RC model using a simple fixed-lid planar water surface approximation. This approach overcomes a major problem encountered in the application of RC models in environments characterised by shallow flows and steep bed gradients. The RC model is four orders of magnitude faster than the physics based models when performing steady-state hydrodynamic calculations. However, the iterative nature of the RC model calculations implies a reduction in computational efficiency relative to some other RC models. A further implication of this is that, if used to simulate channel morphodynamics, the present RC model may offer only a marginal advantage in terms of computational efficiency over approaches based on the shallow water equations. These observations illustrate the trade off between model realism and efficiency that is a key consideration in RC modelling. Moreover, this outcome highlights a need to rethink the use of RC morphodynamic models in fluvial geomorphology and to move away from existing grid-based approaches, such as the popular cellular automata (CA) models, that remain essentially reductionist in nature. In the case of the world's largest sand-bed rivers, this might be achieved by implementing the RC model outlined here as one element within a hierarchical modelling framework that would enable computationally efficient simulation of the morphodynamics of large rivers over millennial time scales. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A family history of coronary artery disease (CAD), especially when the disease occurs at a young age, is a potent risk factor for CAD. DNA collection in families in which two or more siblings are affected at an early age allows identification of genetic factors for CAD by linkage analysis. We performed a genomewide scan in 1,168 individuals from 438 families, including 493 affected sibling pairs with documented onset of CAD before 51 years of age in men and before 56 years of age in women. We prospectively defined three phenotypic subsets of families: (1) acute coronary syndrome in two or more siblings; (2) absence of type 2 diabetes in all affected siblings; and (3) atherogenic dyslipidemia in any one sibling. Genotypes were analyzed for 395 microsatellite markers. Regions were defined as providing evidence for linkage if they provided parametric two-point LOD scores >1.5, together with nonparametric multipoint LOD scores >1.0. Regions on chromosomes 3q13 (multipoint LOD = 3.3; empirical P value <.001) and 5q31 (multipoint LOD = 1.4; empirical P value <.081) met these criteria in the entire data set, and regions on chromosomes 1q25, 3q13, 7p14, and 19p13 met these criteria in one or more of the subsets. Two regions, 3q13 and 1q25, met the criteria for genomewide significance. We have identified a region on chromosome 3q13 that is linked to early-onset CAD, as well as additional regions of interest that will require further analysis. These data provide initial areas of the human genome where further investigation may reveal susceptibility genes for early-onset CAD.
Resumo:
Desde el año 1992, en que se crea la nueva diplomatura de maestro en Educación Musical, las escuelas y facultades de formación del profesorado empiezan a formar a los especialistas responsables de impartir la educación musical en la escuela primaria. Partiendo de la hipótesis de que el ejemplo de voz cantada que presenta el alumnado de la nueva diplomatura no es el más apropiado para ser imitado por niños y niñas de la escuela primaria, el autor de este artículo nos describe el estudio exploratorio practicado al alumnado que finaliza la diplomatura de maestro en educación musical en la Facultat de Formació del Professorat de la Universitat de Barcelona. Este estudio, que ha contado con dos instrumentos de recogida de la información, una observación y un cuestionario, plantea como objetivo principal detectar las dificultades básicas planteadas por el alumnado, y al mismo tiempo conocer las causas que las originan. Una vez analizados en profundidad los datos y las informaciones recogidas, el autor aporta soluciones encaminadas a resolver las problemáticas, así como a mejorar el ejemplo de voz cantada de los futuros maestros.
Resumo:
En este artículo se repasan los principales modelos teóricos explicativos del aprendizaje motor. En un primer apartado se comentan las aportaciones propias de la psicología cognitiva y más concretamente del corriente del procesamiento de la información: la Teoría del bucle cerrado de Jack Adams y la Teoría del esquema de Richard Schmidt. Posteriormente, se exponen las críticas que han recibido estos modelos y, para hacerlo, se introducen las principales aportaciones que el científico ruso Nikolai Bernstein hizo al estudio del aprendizaje y el control motor. A partir de estas aportaciones, se introducen las formulaciones teóricas que, surgidas desde la perspectiva dinámica-ecológica, pretenden superar las limitaciones de los modelos cognitivos. Finalmente, se comparan las dos perspectivas y se sugieren algunas posibles vías de desarrollo futuro del campo que nos ocupa.
Resumo:
Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.
Integrating species distribution models (SDMs) and phylogeography for two species of Alpine Primula.
Resumo:
The major intention of the present study was to investigate whether an approach combining the use of niche-based palaeodistribution modeling and phylo-geography would support or modify hypotheses about the Quaternary distributional history derived from phylogeographic methods alone. Our study system comprised two closely related species of Alpine Primula. We used species distribution models based on the extant distribution of the species and last glacial maximum (LGM) climate models to predict the distribution of the two species during the LGM. Phylogeographic data were generated using amplified fragment length polymorphisms (AFLPs). In Primula hirsuta, models of past distribution and phylogeographic data are partly congruent and support the hypothesis of widespread nunatak survival in the Central Alps. Species distribution models (SDMs) allowed us to differentiate between alpine regions that harbor potential nunatak areas and regions that have been colonized from other areas. SDMs revealed that diversity is a good indicator for nunataks, while rarity is a good indicator for peripheral relict populations that were not source for the recolonization of the inner Alps. In P. daonensis, palaeo-distribution models and phylogeographic data are incongruent. Besides the uncertainty inherent to this type of modeling approach (e.g., relatively coarse 1-km grain size), disagreement of models and data may partly be caused by shifts of ecological niche in both species. Nevertheless, we demonstrate that the combination of palaeo-distribution modeling with phylogeographical approaches provides a more differentiated picture of the distributional history of species and partly supports (P. hirsuta) and partly modifies (P. daonensis and P. hirsuta) hypotheses of Quaternary distributional history. Some of the refugial area indicated by palaeodistribution models could not have been identified with phylogeographic data.
Resumo:
Abstract : The principal focus of this work was to study the molecular changes leading to the development of diabetic peripheral neuropathy (DPN). DPN is the most common complication associated with both type I and II diabetes mellitus (DM). This pathology is the leading cause of non-traumatic amputations. Even though the pathological and morphological changes underlying DPN are relatively well described, the implicated molecular mechanisms remain poorly understood. The following two approaches were developed to study the development of DPN in a rodent model of DM type I. As a first approach, we studied the implication of lipid metabolism in DPN phenotype, concentrating on Sterol Response Element Binding Protein (SREBP)-lc which is the key regulator of storage lipid metabolism. We showed that SREBP-1c was expressed in peripheral nerves and that its expression profile followed the expression of genes involved in storage lipid metabolism. In addition, the expression of SREBP-1c in the endoneurium of peripheral nerves was dependant upon nutritional status and this expression was also perturbed in type I diabetes. In line with this, we showed that insulin elevated the expression of SREBP-1c in primary cultured Schwann cells by activating the SREBP-1c promoter. Taken together, these findings reveal that SREBP-1c expression in Schwann cells responds to metabolic stimuli including insulin and that this response is affected in type I diabetes mellitus. This suggests that disturbed SREBP-1c regulated lipid metabolism may contribute to the pathophysiology of DPN. As a second approach, we performed a comprehensive analysis of the molecular changes associated with DPN in the Akital~1~+ mouse which is a model of spontaneous early-onset type I diabetes mellitus. This mouse expresses a mutated non-functional isoform of insulin, leading to hypoinsulinemia and hyperglycaemia. To determine the onset of DPN, weight, blood glucose and motor nerve conduction velocity (MNCV) were measured in Akital+/+ mice during the first three months of life. A decrease in MNCV was evident akeady one week after the onset of hyperglycemia. To explore the molecular changes associated with the development of DPN in these mice, we performed gene expression profiling using sciatic nerve endoneurium and dorsal root ganglia (DRG) isolated from early diabetic male Akita+/+ mice and sex-matched littermate controls. No major transcriptional changes were detected either in the DRG or in the sciatic nerve endoneurium. This experiment indicates that the phenotypic changes observed during the development of DPN are not correlated with major transcriptional alterations, but mainly with alterations at the protein level. Résumé Lors ce travail, nous nous sommes intéressés aux changements moléculaires aboutissant aux neuropathies périphériques dues au diabète (NPD). Les NPD sont la complication la plus commune du diabète de type I et de type II. Cette pathologie est une cause majeure d'amputations. Même si les changements pathologiques et morphologiques associés aux NPD sont relativement bien décrits, les mécanismes moléculaires provoquant cette pathologie sont mal connus. Deux approches ont principalement été utilisées pour étudier le développement des NPD dans des modèles murins du diabète de type I. Nous avons d'abord étudié l'impact du métabolisme des lipides sur le développement des NPD en nous concentrant sur Sterol Response Element Binding Protein (SREBP)-1 c qui est un régulateur clé des lipides de stockage. Nous avons montré que SREBP-1 c est exprimé dans les nerfs périphériques et que son profil d'expression suit celui de gènes impliqués dans le métabolisme des lipides de stockage. De plus, l'expression de SREBP-1c dans l'endoneurium des nerfs périphériques est dépendante du statut nutritionnel et est dérégulée lors de diabète de type I. Nous avons également pu montrer que l'insuline augmente l'expression de SREBP-1c dans des cultures primaires de cellules de Schwann en activant le promoteur de SREBP-1c. Ses résultats démontrent que l'expression de SREBP-1c dans les cellules de Schwann est contrôlée par des stimuli métaboliques comme l'insuline et que cette réponse est affectée dans le cas d'un diabète de type I. Ces données suggèrent que la dérégulation de l'expression de SREBP-1c lors du diabète pourrait affecter le métabolisme des lipides et ainsi contribuer à la pathophysiologie des NPD. Comme seconde approche, nous avons réalisé une analyse globale des changements moléculaires associés au développement des NPD chez les souris Akita+/+, un modèle de diabète de type I. Cette souris exprime une forme mutée et non fonctionnelle de l'insuline provoquant une hypoinsulinémie et une hyperglycémie. Afin de déterminer le début du développement de la NPD, le poids, le niveau de glucose sanguin et la vitesse de conduction nerveuse (VCN) ont été mesurés durant les 3 premiers mois de vie. Une diminution de la VCN a été détectée une semaine seulement après le développement de l'hyperglycémie. Pour explorer les changements moléculaires associés avec le développement des NPD, nous avons réalisé un profil d'expression de l'endoneurium du nerf sciatique et des ganglions spinaux isolés à partir de souris Akital+/+ et de souris contrôles Akita+/+. Aucune altération transcriptionnelle majeure n'a été détectée dans nos échantillons. Cette expérience suggère que les changements phénotypiques observés durant le développement des NPD ne sont pas corrélés avec des changements importants au niveau transcriptionnel, mais plutôt avec des altérations au niveau protéique. Résumé : Lors ce travail, nous nous sommes intéressés aux changements moléculaires aboutissant aux neuropathies périphériques dues au diabète (NPD). Les NPD sont la complication la plus commune du diabète de type I et de type II. Cette pathologie est une cause majeure d'amputations. Même si les changements pathologiques et morphologiques associés aux NPD sont relativement bien décrits, les mécanismes moléculaires provoquant cette pathologie sont mal connus. Deux approches ont principalement été utilisées pour étudier le développement des NPD dans des modèles murins du diabète de type I. Nous avons d'abord étudié l'impact du métabolisme des lipides sur le développement des NPD en nous concentrant sur Sterol Response Element Binding Protein (SREBP)-1c qui est un régulateur clé des lipides de stockage. Nous avons montré que SREBP-1 c est exprimé dans les nerfs périphériques et que son profil d'expression suit celui de gènes impliqués dans le métabolisme des lipides de stockage. De plus, l'expression de SREBP-1c dans l'endoneurium des nerfs périphériques est dépendante du statut nutritionnel et est dérégulée lors de diabète de type I. Nous avons également pu montrer que l'insuline augmente l'expression de SREBP-1c dans des cultures primaires de cellules de Schwann en activant le promoteur de SREBP-1c. Ses résultats démontrent que l'expression de SREBP-1c dans les cellules de Schwann est contrôlée par des stimuli métaboliques comme l'insuline et que cette réponse est affectée dans le cas d'un diabète de type I. Ces données suggèrent que la dérégulation de l'expression de SREBP-1c lors du diabète pourrait affecter le métabolisme des lipides et ainsi contribuer à la pathophysiologie des NPD. Comme seconde approche, nous avons réalisé une analyse globale des changements moléculaires associés au développement des NPD chez les souris Akita~~Z~+, un modèle de diabète de type I. Cette souris exprime une forme mutée et non fonctionnelle de l'insuline provoquant une hypoinsulinémie et une hyperglycémie. Afin de déterminer le début du développement de la NPD, le poids, le niveau de glucose sanguin et la vitesse de conduction nerveuse (VCN) ont été mesurés durant les 3 premiers mois de vie. Une diminution de la VCN a été détectée une semaine seulement après le développement de l'hyperglycémie. Pour explorer les changements moléculaires associés avec le développement des NPD, nous avons réalisé un profil d'expression de l'endoneurium du nerf sciatique et des ganglions spinaux isolés à partir de souris Akital+/+ et de souris contrôles Akita+/+. Aucune altération transcriptionnelle majeure n'a été détectée dans nos échantillons. Cette expérience suggère que les changements phénotypiques observés durant le développement des NPD ne sont pas corrélés avec des changements importants au niveau transcriptionnel, mais plutôt avec des altérations au niveau protéique.
Resumo:
Aim To evaluate the effects of using distinct alternative sets of climatic predictor variables on the performance, spatial predictions and future projections of species distribution models (SDMs) for rare plants in an arid environment. . Location Atacama and Peruvian Deserts, South America (18º30'S - 31º30'S, 0 - 3 000 m) Methods We modelled the present and future potential distributions of 13 species of Heliotropium sect. Cochranea, a plant group with a centre of diversity in the Atacama Desert. We developed and applied a sequential procedure, starting from climate monthly variables, to derive six alternative sets of climatic predictor variables. We used them to fit models with eight modelling techniques within an ensemble forecasting framework, and derived climate change projections for each of them. We evaluated the effects of using these alternative sets of predictor variables on performance, spatial predictions and projections of SDMs using Generalised Linear Mixed Models (GLMM). Results The use of distinct sets of climatic predictor variables did not have a significant effect on overall metrics of model performance, but had significant effects on present and future spatial predictions. Main conclusion Using different sets of climatic predictors can yield the same model fits but different spatial predictions of current and future species distributions. This represents a new form of uncertainty in model-based estimates of extinction risk that may need to be better acknowledged and quantified in future SDM studies.
Resumo:
The mode of action of nuclear receptors in living cells is an actively investigated field but much remains hypothetical due to the lack, until recently, of methods allowing the assessment of molecular mechanisms in vivo. However, these last years, the development of fluorescence microscopy methods has allowed initiating the dissection of the molecular mechanisms underlying gene regulation by nuclear receptors directly in living cells or organisms. Following our analyses on peroxisome proliferator activated receptors (PPARs) in living cells, we discuss here the different models arising from the use of these tools, that attempt to link mobility, DNA binding or chromatin interaction, and transcriptional activity.
Resumo:
Individual learning (e.g., trial-and-error) and social learning (e.g., imitation) are alternative ways of acquiring and expressing the appropriate phenotype in an environment. The optimal choice between using individual learning and/or social learning may be dictated by the life-stage or age of an organism. Of special interest is a learning schedule in which social learning precedes individual learning, because such a schedule is apparently a necessary condition for cumulative culture. Assuming two obligatory learning stages per discrete generation, we obtain the evolutionarily stable learning schedules for the three situations where the environment is constant, fluctuates between generations, or fluctuates within generations. During each learning stage, we assume that an organism may target the optimal phenotype in the current environment by individual learning, and/or the mature phenotype of the previous generation by oblique social learning. In the absence of exogenous costs to learning, the evolutionarily stable learning schedules are predicted to be either pure social learning followed by pure individual learning ("bang-bang" control) or pure individual learning at both stages ("flat" control). Moreover, we find for each situation that the evolutionarily stable learning schedule is also the one that optimizes the learned phenotype at equilibrium.