959 resultados para NITRIDE NANOTUBES
Resumo:
A series of unsupported dimolybdenum nitride (gamma-Mo(2)N) catalysts differing in surface area were prepared by temperature programmed reduction of MoO(3) with a mixture of NH(3):N(2) (90:10). Characterization of catalysts by BET, XRD, TPR and XPS techniques was carried out. The samples were used as catalysts in hydrotreating reactions (simultaneous hydrodesulfurization of thiophene and hydrogenation of cyclohexene). Low surface area gamma-Mo(2)N materials show much higher specific conversions than those with higher surface area. These results indicate that HDS and HYD reactions over gamma-Mo(2)N seem to be structure-sensitive. The relative exposure extent of crystalline planes (111) and (200) over the different catalysts can be associated with their hydrogen adsorption capacities and with their catalytic performances. The catalytic activities are significantly affected by the catalyst pretreatment conditions. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A series of PtRu nanocomposites supported on H2O2-oxidized multi-walled carbon nanotubes (MWCNTs) were synthesized via two chemical reduction methods - one used aqueous formaldehyde (HCHO method) and the other used ethylene glycol (EG method) as the reducing agents. The effects of the solvents (water and ethylene glycol) and the surface composition of the MWCNTs on the deposition and the dispersion of the metal particles were investigated using N-2 adsorption. TEM. ICP-AES. FTIR and TPD. The wetting heats of the MWCNTs in corresponding solvents were also measured. The characterizations suggest that combination of the surface chemistry of the MWCNTs with the solvents decides the deposition and the dispersion of the metal nanoparticles. These nanocomposites were evaluated as proton exchange membrane fuel cell anode catalyts for oxidation of 50 ppm CO contaminated hydrogen and compared with a commercial PtRu/C catalyst. The data reveal superior performances for the nanocomposites prepared by the EG method to those by the HCHO method and even to that for tile Commercial analogue. Structure performance relationship of the nanocomposites was also studied. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A method with carbon nanotubes functioning both as the adsorbent of solid-phase extraction (SPE) and the matrix for matrix assisted laser desorption/ ionization mass spectrometry (MALDI-MS) to analyze small molecules in solution has been developed. In this method, 10 muL suspensions of carbon nanotubes in 50% (vol/vol) methanol were added to the sample solution to extract analytes onto surface of carbon nanotubes because of their dramatic hydrophobicity. Carbon nanotubes in solution are deposited onto the bottom of tube with centrifugation. After removing the supernatant fluid, carbon nanotubes are suspended again with dispersant and pipetted directly onto the sample target of the MALDI-MS to perform a mass spectrometric analysis. It was demonstrated by analysis of a variety of small molecules that the resolution of peaks and the efficiency of desorption/ ionization on the carbon nanotubes are better than those on the activated carbon. It is found that with the addition of glycerol and sucrose to the dispersant, the intensity, the ratio of signal to noise (S/N), and the resolution of peaks for analytes by mass spectrometry increased greatly. Compared with the previously reported method by depositing sample solution onto thin layer of carbon nanotubes, it is observed that the detection limit for analytes can be enhanced about 10 to 100 times due to solid-phase extraction of analytes in solution by carbon nanotubes. An acceptable result of simultaneously quantitative analysis of three analytes in solution has been achieved. The application in determining drugs spiked into urine has also been realized. (C) 2004 American Society for Mass Spectrometry.
Resumo:
Oxidized carbon nanotubes are tested as a matrix for analysis of small molecules by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). Compared with nonoxidized carbon nanotubes, oxidized carbon nanotubes facilitate sample preparation because of their higher solubility in water. The matrix layer of oxidized carbon nanotubes is much more homogeneous and compact than that of nonoxidized carbon nanotubes. The efficiency of desorption/ionization for analytes and the reproducibility of peak intensities within and between sample spots are greatly enhanced on the surface of oxidized carbon nanotubes. The advantage of the oxidized carbon nanotubes in comparison with alpha-cyano-4-hydroxycinnamic acid (CCA) and carbon nanotubes is demonstrated by MALDI-TOF-MS analysis of an amino acid mixture. The matrix is successfully used for analysis of synthetic hydroxypropyl P-cyclodextrin, suggesting a great potential for monitoring reactions and for product quality control. Reliable quantitative analysis of jatrorrhizine and palmatine with a wide linear range (1-100 ng/mL) and good reproducibility of relative peak areas (RSD less than 10 %) is achieved using this matrix. Concentrations of jatrorrhizine (8.65 mg/mL) and palmatine (10.4 mg/mL) in an extract of Coptis chinensis Franch are determined simultaneously using the matrix and a standard addition method. (c) 2005 American Society for Mass Spectrometry.
Resumo:
The alumina nanotubes were prepared by using the anionic surfactant, sodium dodecyl sulfonate (SDS), as structure-directing template for the first time with Al(NO3)(3)center dot 9H(2)O as precursor via a hydrothermal method. Structure and morphology of the nanotubes were characterized by XRD, TEM, FT-IR, TG and N-2 adsorption-desorption. The obtained nanotubes were found having outer diameters from 6 to 8 nm with length up to 200 nm. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for environmental analysis has been mainly focused on qualitative analysis of high-mass molecules, such as toxins, humic acid, and microorganisms. Herein,we describe a novel MALDI-TOF-MS method with a matrix of oxidized carbon nanotubes for analysis of low-mass compounds in environmental samples. A number of chemicals in the environment were qualitatively analyzed by the present method, and it was found that most of them, especially the highly polar chemicals, were measurable with high sensitivity. With the intrinsic ability to measure high-mass chemicals, this method can compensate for the current shortage of methods for environmental analysis for the measurement of highly polar or high-mass chemicals. For sample analysis, arsenic speciation in Chinese traditional medicines was qualified and diphenylolpropane in water samples was quantified. With the relatively high tolerance of the method to interfering molecules, a simple pretreatment or even no pretreatment could be employed before MS detection. Furthermore, this method can be employed in a high-throughput format.
Resumo:
Locating hexagonal and cubic phases in boron nitride using wavelength-selective optically detected x-ray absorption spectroscopy, D.A. Evans, A.R. Vearey-Roberts, N.R.J. Poolton Appl Phys Lett 89, (2006) 161107
Resumo:
Sponsorship: EPSRC, STFC
Resumo:
Poolton, Nigel; Towlson, B.M.; Hamilton, B.; Evans, D.A., (2006) 'Synchrotron-laser interactions in hexagonal boron nitride: an examination of charge trapping dynamics at the boron K-edge', New Journal of Physics 8 pp.76 RAE2008
Resumo:
This work reports the successful realization of MoS2 nanotubes by a novel intercalation chemistry and hydrothermal treatment. An inorganic-organic precursor of hexadecylamine (HDA) and molybdenum disulphide (MoS2) were used in synthesizing the nanocomposite comprising laminar MoS2 with HDA intercalated in the interlaminar spacing. The formation of MoS2 nanotubes occurred during hydrothermal treatment (HT) by a self-organized rolling mechanism. The nanotubes were observed to have dimensions 2-12 µm in length and inner diameters typically in the range of 25-100 nm. We also report the formation of amorphous nanocoils of MoS2 obtained during similar procedures.