951 resultados para NEGATIVE THERMAL-EXPANSION
Resumo:
The thermal decomposition characteristics of rice husk have been investigated by dynamic thermoanalytical techniques: DTA, TG, DTG and isothermal heating. The observed thermal behaviour is explained on the basis of a superposition of the decomposition of cellulose and lignin, which are the major organic constituents of rice husk. Morphological features of silica in husk as well as the ash are examined by scanning electron microscopy. Silica in the residual ash has been characterised by X-ray diffraction and infrared spectroscopy. Controlled thermal decomposition of rice husk has been shown to be a convenient method for the liberation of silica.
Resumo:
Abstract is not available.
Resumo:
There is an increased interest on the use of Unmanned Aerial Vehicles (UAVs) for wildlife and feral animal monitoring around the world. This paper describes a novel system which uses a predictive dynamic application that places the UAV ahead of a user, with a low cost thermal camera, a small onboard computer that identifies heat signatures of a target animal from a predetermined altitude and transmits that target’s GPS coordinates. A map is generated and various data sets and graphs are displayed using a GUI designed for easy use. The paper describes the hardware and software architecture and the probabilistic model for downward facing camera for the detection of an animal. Behavioral dynamics of target movement for the design of a Kalman filter and Markov model based prediction algorithm are used to place the UAV ahead of the user. Geometrical concepts and Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of the user, thus delivering a new way point for autonomous navigation. Results show that the system is capable of autonomously locating animals from a predetermined height and generate a map showing the location of the animals ahead of the user.
Resumo:
Cereal kernels are known to contain a number of minor components that possess beneficial health attributes. In this thesis rye and wheat were studied as sources of steryl ferulates and steryl glycosides and their behaviour in processing were evaluated. Further, enzymatic hydrolysis of these conjugates was studied, as well as the capacity of steryl ferulates to inhibit lipid oxidation at different temperatures. Steryl ferulates were shown to have a strong positive correlation with dietary fibre contents in milling fractions from the outer parts of the kernels obtained from a commercial scale mill. Highest contents of steryl ferulates were found in the bran in both cereals, with the content decreasing once moving towards the inner parts of the kernel. Variation in the contents of steryl ferulates was higher in wheat fractions than rye fractions. Steryl glycosides, on the other hand, had either negative or no correlation with dietary fibre, and the range of the steryl glycoside contents was much narrower than that of steryl ferulates in both cereals. There were significant differences in the sterol compositions of these steryl conjugates when compared with each other or with the total plant sterols in the corresponding fractions. Properties of steryl ferulates and steryl glycosides were evaluated after common processing methods and in enzymatic hydrolysis. Thermal and mechanical processing had only minor or no effects on the contents of steryl conjugates from rye and wheat bran. Enzymatic treatments on the other hand caused some changes, especially in the contents of glycosylated sterols. When steryl ferulates extracted from rye or wheat bran were subjected to enzymatic treatments by steryl esterase, significant differences in the rates of hydrolysis were observed between steryl ferulates from different sources with differing sterol compositions. Further, differences were also observed between enzymes from different sources. Steryl glycosides were shown to be hydrolysed by β-glucosidase (cellobiase) from A. niger, but less with β-glucosidases from other sources. Steryl ferulates showed good antioxidant activity at both moderate and high temperatures. In bulk and emulsion systems of methyl linoleate at 40°C steryl ferulates extracted from rye and wheat bran inhibited hydroperoxide formation much more effectively than synthetic steryl ferulates or those extracted from rice (γ-oryzanol), demonstrating that the sterol composition has an effect on the activity. At cooking (100°C) and frying temperatures (180°C) sitostanyl ferulate was shown to inhibit polymer formation significantly and, especially at 100°C, comparably to α-tocopherol. The rate of antioxidant degradation was slower for sitostanyl ferulate, showing higher heat stability than α-tocopherol. When evaluated as a mixture, no synergistic effect was observed between these two antioxidants. The data presented in this thesis provides information that may henceforth be applied when evaluating the intakes of steryl conjugates from cereal sources, as well as their possible influences as minor bioactive components. Wheat and rye both are good sources of steryl ferulates and steryl glycosides and, especially with steryl ferulates, what may be lost out to some other cereals on quantity is compensated with quality of the sterol composition.
Resumo:
Gram-negative bacteria are harmful in various surroundings. In the food industy their metabolites are potential cause of spoilage and this group also includes many severe or potential pathogens, such as Salmonella. Due to their ability to produce biofilms Gram-negative bacteria also cause problems in many industrial processes as well as in clinical surroundings. Control of Gram-negative bacteria is hampered by the outer membrane (OM) in the outermost layer of the cells. This layer is an intrinsic barrier for many hydrophobic agents and macromolecules. Permeabilizers are compounds that weaken OM and can thus increase the activity of antimicrobials by facililating entry of hydrophobic compounds and macromolecules into the cell where they can reach their target sites and inhibit or destroy cellular functions. The work described in this thesis shows that lactic acid acts as a permeabilizer and destabilizes the OM of Gram-negative bacteria. In addition, organic acids present in berriers, i.e. malic, sorbic and benzoic acid, were shown to weaken the OM of Gram-negative bacteria. Organic acids can poteniate the antimicrobial activity of other compounds. Microbial colonic degradation products of plant-derived phenolic compounds (3,4-dihydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, 3,4-dihydroxyphenylpropionic acid, 4-hydroxyphenylpropionic acid, 3-phenylpropionic acid and 3-hydroxyphenylpropionic acid) efficiently destabilized OM of Salmonella. The studies increase our understanding of the mechanism of action of the classical chelator, ethylenediaminetetra-acetic acid (EDTA). In addition, the results indicate that the biocidic activity of benzalkonium chloride against Pseudomonas can be increased by combined use with polyethylenimine (PEI). In addition to PEI, several other potential permeabilizers, such as succimer, were shown to destabilize the OM of Gram-negative bacteria. Furthermore, combination of the results obtained from various permeability assays (e.g. uptake of a hydrophobic probe, sensitization to hydrophobic antibiotics and detergents, release of lipopolysaccharide (LPS) and LPS-specific fatty acids) with atomic force microscopy (AFM) image results increases our knowledge of the action of permeabilizers.
Resumo:
A study of the thermal decomposition and ignition of coal as functions of pelletizing pressure and dwell time has revealed that: (1) ignition and thermal behaviour are related to the apparent density of the pelletized coal; (2) for a given apparent density of pelletized coal, the ignition temperature is related to the rate constants of thermal decomposition. Isothermal decomposition in air at 550 °C has been shown to fit the Avrami-Erofeev equation for three-dimensional growth of nuclei.
Resumo:
A new mode of driven nonlinear vibrations of a stretched string is investigated with reference to conditions of existence, properties, and regions of stability. It is shown that this mode exhibits negative resistance properties at all frequencies and driving force amplitudes. Discovery of this mode helps to fill certain gaps in the theory of forced nonlinear vibrations of strings.
Resumo:
Background:Quantifying genetic diversity and metapopulation structure provides insights into the evolutionary history of a species and helps develop appropriate management strategies. We provide the first assessment of genetic structure in spinner sharks (Carcharhinus brevipinna), a large cosmopolitan carcharhinid, sampled from eastern and northern Australia and South Africa. Methods and Findings:Sequencing of the mitochondrial DNA NADH dehydrogenase subunit 4 gene for 430 individuals revealed 37 haplotypes and moderately high haplotype diversity (h = 0.6770 ±0.025). While two metrics of genetic divergence (ΦST and FST) revealed somewhat different results, subdivision was detected between South Africa and all Australian locations (pairwise ΦST, range 0.02717–0.03508, p values ≤ 0.0013; pairwise FST South Africa vs New South Wales = 0.04056, p = 0.0008). Evidence for fine-scale genetic structuring was also detected along Australia’s east coast (pairwise ΦST = 0.01328, p < 0.015), and between south-eastern and northern locations (pairwise ΦST = 0.00669, p < 0.04).Conclusions: The Indian Ocean represents a robust barrier to contemporary gene flow in C. brevipinna between Australia and South Africa. Gene flow also appears restricted along a continuous continental margin in this species, with data tentatively suggesting the delineation of two management units within Australian waters. Further sampling, however, is required for a more robust evaluation of the latter finding. Evidence indicates that all sampled populations were shaped by a substantial demographic expansion event, with the resultant high genetic diversity being cause for optimism when considering conservation of this commercially-targeted species in the southern Indo-Pacific.
Resumo:
As a part of our research programme on hydrazine derivatives [I-4]. we have prepared a number of hydrazinium metal sulfates [ 1.S] (N2 H5), M(SO4)2, where M = Mn, Fe, Co, Ni, Cu. Zn, Cd and Mg and their hydrazine adducts [2] of the type (N2H5)2M(SO4)2 . 3 N2H4. where M = Fe, Co and Ni, as well as N2H5AI(SO4)2 . 6N2H4. Recently, we reported [5.6] the thermal analysis of these compounds. Our .literature survey on the thermal analysis of alums [7] and aluminium salts [8] indicated that, although the preparation of hydrazinium aluminium sulfate dodecahydrate, N2H5Al(SO4)2 . 12 H2O, has been reported [9], there appears to be no report on its thermal analysis. Here, we report the results df the thermal analysis of N2H5Al(SO4)2 . 12 H2O and N2H5Al(SO4)2 . 2N2H4.
Resumo:
Circulating tumor cells (CTCs) are the seeds for cancer metastases development, which is responsible for >90% of cancer-related deaths. Accurate quantification of CTCs in human fluids could be an invaluable tool for understanding cancer prognosis, delivering personalized medicine to prevent metastasis and finding cancer therapy effectiveness. Although CTCs were first discovered more than 200 years ago, until now it has been a nightmare for clinical practitioners to capture and diagnose CTCs in clinical settings. Our society needs rapid, sensitive, and reliable assays to identify the CTCs from blood in order to help save millions of lives. Due to the phenotypic EMT transition, CTCs are undetected for more than one-third of metastatic breast cancer patients in clinics. To tackle the above challenges, the first volume in “Circulating Tumor Cells (CTCs): Detection Methods, Health Impact and Emerging Clinical Challenges discusses recent developments of different technologies, which have the capability to target and elucidate the phenotype heterogenity of CTCS. It contains seven chapters written by world leaders in this area, covering basic science to possible device design which can have beneficial applications in society. This book is unique in its design and content, providing an in-depth analysis to elucidate biological mechanisms of cancer disease progression, CTC detection challenges, possible health effects and the latest research on evolving technologies which have the capability to tackle the above challenges. It describes the broad range of coverage on understanding CTCs biology from early predictors of the metastatic spread of cancer, new promising technology for CTC separation and detection in clinical environment and monitoring therapy efficacy via finding the heterogeneous nature of CTCs. (Imprint: Nova Biomedical)
Resumo:
Abstract is not available.
Resumo:
The thermal stress problem of a circular hole in a spherical shell of uniform thickness is solved by using a continuum approach. The influence of the hole is assumed to be confined to a small region around the opening. The thermal stress problem is converted as usual to an equivalent boundary value problem with forces specified around the cutout. The stresses and displacement are obtained for a linear variation of temperature across the thickness of the shell and presented in graphical form for ready use.
Resumo:
A divide-and-correct algorithm is described for multiple-precision division in the negative base number system. In this algorithm an initial quotient estimate is obtained from suitable segmented operands; this is then corrected by simple rules to arrive at the true quotient.