990 resultados para N-H INSERTION
Resumo:
In this study, we report the characterization of a strain of Enterococcus faecium vanA, which grows only in the presence of vancomycin (VDEfm-UEL). The bacterium was isolated from the feces of a female patient who had undergone surgical treatment of Reinke’s edema and was receiving intravenous vancomycin therapy for infection with methicillin/oxacillin-resistant Staphylococcus aureus, a postoperative complication. Antimicrobial dependence was further confirmed by the vancomycin E-test. VDEfm-UEL was also shown to be resistant to ampicillin, ciprofloxacin, chloramphenicol, erythromycin, levofloxacin, penicillin, rifampicin, and teicoplanin. The putative virulence genes efaA, gelE and esp were detected by PCR. The ddl gene from VDEfm-UEL was cloned and sequenced. Vancomycin dependence seems to be associated with the insertion of a nucleotide in that sequence, which results in a frame-shift mutation, introducing a premature stop codon. This is the first report of vancomycin-dependent E. faecium isolation in a university hospital in Brazil.
Resumo:
Insertional mutagenesis is an important tool for functional genomics in Drosophila melanogaster. The insertion site in the KG00562 mutant fly line has been mapped to the CG8709 (herein named DmLpin) locus and to the 3’ of kermit (also called dGIPC). This mutant line presents a high lethality rate resulting from a gain of function. To obtain some insight into the biological role of the mutated locus, we have characterized the mutation and its relation to the high mortality of the KG00562 fly line. In this mutant, we did not detect one of the DmLpin transcripts, namely DmLpinK, but we did detect an unusual 2.3-kb mRNA (LpinK-w). Further investigation revealed that the LpinK-w transcript results from an aberrant splicing between the untranslated first exon of DmLpinK and the mini-white marker gene. Lack of DmLpinK or LpinK-w expression does not contribute to lethality, since heterozygous KG00562/Def7860 animals presented lethality rates comparable to those of the wild type. In contrast, the overexpression of kermit was associated with lethality of the KG00562 fly line. Significantly higher levels of kermit were detected in the Malpighian tubules of KG00562/+ flies that presented higher lethality rates than wild-type or KG00562/Def7860 animals, in which the lethality was rescued. In agreement with a recently reported study, our data support the hypothesis that misexpression of kermit/dGIPC could interfere with Drosophila development, with further investigations being needed in this direction.
Resumo:
Drospirenone (DRSP) is a progestin with anti-aldosterone properties and it reduces blood pressure in hypertensive women. However, the effects of DRSP on endothelium-dependent coronary vasodilation have not been evaluated. This study investigated the effects of combined therapy with estrogen (E2) and DRSP on endothelium-dependent vasodilation of the coronary bed of ovariectomized (OVX) spontaneously hypertensive rats. Female spontaneously hypertensive rats (n=87) at 12 weeks of age were randomly divided into sham operated (Sham), OVX, OVX treated with E2 (E2), and OVX treated with E2 and DRSP (E2+DRSP) groups. Hemodynamic parameters were directly evaluated by catheter insertion into the femoral artery. Endothelium-dependent vasodilation in response to bradykinin in the coronary arterial bed was assessed using isolated hearts according to a modified Langendorff method. Coronary protein expression of endothelial nitric oxide synthase and estrogen receptor alpha (ER-α) was assessed by Western blotting. Histological slices of coronary arteries were stained with hematoxylin and eosin, and morphometric parameters were analyzed. Oxidative stress was assessed in situ by dihydroethidium fluorescence. Ovariectomy increased systolic blood pressure, which was only prevented by E2+DRSP treatment. Estrogen deficiency caused endothelial dysfunction, which was prevented by both treatments. However, the vasodilator response in the E2+DRSP group was significantly higher at the three highest concentrations compared with the OVX group. Reduced ER-α expression in OVX rats was restored by both treatments. Morphometric parameters and oxidative stress were augmented by OVX and reduced by E2 and E2+DRSP treatments. Hormonal therapy with E2 and DRSP may be an important therapeutic option in the prevention of coronary heart disease in hypertensive post-menopausal women.
Resumo:
The characterization of wine samples by direct insertion electrospray ionization mass spectrometry (ESI-MS), without pre-treatment or chromatographic separation, in a process denominated fingerprinting, has been applied to several samples of wine produced with grapes of the Pinot noir, Merlot and Cabernet Sauvignon varieties from the state o Rio Grande do Sul, in Brazil. The ESI-MS fingerprints of the samples detected changes which occurred during the aging process in the three grape varieties. Principal Component Analysis (PCA) of the negative ion mode fingerprints was used to group the samples, pinpoint the main changes in their composition, and indicate marker ions for each group of samples.
Resumo:
Molecular oxygen (O2) is a key component in cellular respiration and aerobic life. Through the redox potential of O2, the amount of free energy available to organisms that utilize it is greatly increased. Yet, due to the nature of the O2 electron configuration, it is non-reactive to most organic molecules in the ground state. For O2 to react with most organic compounds it must be activated. By activating O2, oxygenases can catalyze reactions involving oxygen incorporation into organic compounds. The oxygen activation mechanisms employed by many oxygenases to have been studied, and they often include transition metals and selected organic compounds. Despite the diversity of mechanisms for O2 activation explored in this thesis, all of the monooxygenases studied in the experimental part activate O2 through a transient carbanion intermediate. One of these enzymes is the small cofactorless monooxygenase SnoaB. Cofactorless monooxygenases are unusual oxygenases that require neither transition metals nor cofactors to activate oxygen. Based on our biochemical characterization and the crystal structure of this enzyme, the mechanism most likely employed by SnoaB relies on a carbanion intermediate to activate oxygen, which is consistent with the proposed substrate-assisted mechanism for this family of enzymes. From the studies conducted on the two-component system AlnT and AlnH, both the functions of the NADH-dependent flavin reductase, AlnH, and the reduced flavin dependent monooxygenase, AlnT, were confirmed. The unusual regiochemistry proposed for AlnT was also confirmed on the basis of the structure of a reaction product. The mechanism of AlnT, as with other flavin-dependent monooxygenases, is likely to involve a caged radical pair consisting of a superoxide anion and a neutral flavin radical formed from an initial carbanion intermediate. In the studies concerning the engineering of the S-adenosyl-L-methionine (SAM) dependent 4-O-methylase DnrK and the homologous atypical 10-hydroxylase RdmB, our data suggest that an initial decarboxylation of the substrate is catalyzed by both of these enzymes, which results in the generation of a carbanion intermediate. This intermediate is not essential for the 4-O-methylation reaction, but it is important for the 10-hydroxylation reaction, since it enables substrate-assisted activation of molecular oxygen involving a single electron transfer to O2 from a carbanion intermediate. The only role for SAM in the hydroxylation reaction is likely to be stabilization of the carbanion through the positive charge of the cofactor. Based on the DnrK variant crystal structure and the characterizations of several DnrK variants, the insertion of a single amino acid in DnrK (S297) is sufficient for gaining a hydroxylation function, which is likely caused by carbanion stabilization through active site solvent restriction. Despite large differences in the three-dimensional structures of the oxygenases and the potential for multiple oxygen activation mechanisms, all the enzymes in my studies rely on carbanion intermediates to activate oxygen from either flavins or their substrates. This thesis provides interesting examples of divergent evolution and the prevalence of carbanion intermediates within polyketide biosynthesis. This mechanism appears to be recurrent in aromatic polyketide biosynthesis and may reflect the acidic nature of these compounds, propensity towards hydrogen bonding and their ability to delocalize π-electrons.
Resumo:
Theories of international trade: a debate on the relationship between economic growth and foreign market insertion. The paper analyzes the importance accorded to the high technology industry sector in the process of economic growth, in its relation to international trade. Considering at first liberal arguments that disregard productive and commercial specialization as a cause of unequal economic development, the paper discusses then some institutionalist and evolutionist arguments which, since List, stress that high technology specialization matters for the rate of increase of productivity and for the surmount for foreign exchange restrictions to growth.
Resumo:
Exchange rate regime and structural changes in the Brazilian manufacturing industry. This article proposes an analysis of the relationship between exchange rate regime and evolution of the Brazilian manufacturing industry during the period 1980-2008. Its main purpose is to detect the direction of the structural changes imposed by the new form of international insertion consolidated throughout the 1990s. The work also provides new empirical evidence regarding the assumptions of deindustrialization and "Dutch disease", which mark the current debate on the effects of the appreciation of real exchange rate in the Brazilian economy.
Resumo:
China has experienced not only high rates of economic growth as well as an unprecedented competitive international insertion since the turn of the century. This process was not guided solely by market forces or influenced by Government intervention in the economy. Although much has been argued that China's "going global" strategy is rooted in state action, and especially its policy of exchange rate depreciation and trade policy incentives for exports and investments abroad, we argue that the major determinant of this strategy, which established the basic conditions for industrial competitiveness, was its industrial policy. The focus of this article is on the changes in China's industrial structure, emphasizing that Chinese industrial policy is a central determinant of its international insertion strategy.
Resumo:
This paper has as its purpose to analyze the insertion of Brazil in the international economic order, considering the fundaments of the world power, the global crisis, the geopolitical changes and their consequences on the global order. The text attempts to present the advantages and structural challenges for an adequate international insertion of technology are the key elements in a process of economic and social innovation whose goals are to build a richer society, more just and compassionate, and environmentally sustainable.
Resumo:
A number of synthetically useful ring systems can be prepared via the intramolecular insertion of a metal-stabilized carbenoid into a heteroaromatic systems. The chemical outcome of these reactions are dependent not only on the nature of the heteroatom but also on the length of the aliphatic tether linking the carbenoid moiety with the aromatic fragment. Our work with furanyl and thienyl systems containing a single methylene tether have allowed for some rather atypical chemistry. For example, treatment of l-diazo-3-(2-thienyl)-2-propanone (6) with catalytic rhodium (II) acetate yields 5,6- dihydro-4^-cyclopenta[Z>]thiophen-5-one (3) while, the isomeric l-diazo-3-(3-thienyl)-2- propanone(15) gives a spiro-disulphide (20). Novel chemistry was also exhibited in the analogous furanyl systems. While treatment of l-diazo-3-(3-furanyl)-2-propanone (52) with Rh2(OAc)4 resulted in the expected 2-(4-Oxo-2-cyclopentenyliden)acetaldehyde (54), isomeric l-diazo-3-(2- furanyl)-2-propanone (8) undergoes vinylogous Wolff rearrangement to give a mixture of 6a-methyl-2,3,3a,6a-tetrahydrofuro[2,i-^>]furan-2-one (44) and 2-(2-methyl-3-furyl)acetic acid (43). Rhodium acetate catalyzed decomposition of l-diazo-3-(3-benzofuranyl)-2- propanone (84) and l-diazo-3-(2-benzofuranyl)-2-propanone (69)also allows for vinylogous Wolff rearrangement, a chemistry unseen in benzofuranyl systems with longer tethers. A number of interesting products were isolated from the trapping of intermediate ketenes. Decomposition of l-diazo-3-(3-benzothienyl)-2-propanone (100) resulted in the formation of 2,3-dihydro-l//-benzo[^]cyclopenta[^thiophen-2-one (102). However, in addition to (102), a dimer was also generated from the decomposition of l-diazo-3-(2- benzothienyl)-2-propanone (109). The insight into the mechanistic underpinnings of the above reactions are provided by molecular modeling at a PM3 level.
Resumo:
The construction of adenovirus vectors for cloning and foreign gene expression requires packaging cell lines that can complement missing viral functions caused by sequence deletions and/or replacement with foreign DNA sequences. In this study, packaging cell lines were designed to provide in trans the missing bovine adenovirus functions, so that recombinant viruses could be generated. Fetal bovine kidney and lUng cells, acquired at the trimester term from a pregnant cow, were tranfected with both digested wild type BAV2 genomic DNA and pCMV-EI. The plasmid pCMV-EI was specifically constructed to express El of BAV2 under the control of the cytomegalovirus enhancer/promoter (CMV). Selection for "true" transformants by continuous passaging showed no success in isolating immortalised cells, since the cells underwent crisis resulting in complete cell death. Moreover, selection for G418 resistance, using the same cells, also did not result in the isolation of an immortalised cell line and the same culture-collapse event was observed. The lack of success in establishing an immortalised cell line from fetal tissue prompted us to transfect a pre-established cell line. We began by transfecting MDBK (Mardin-Dardy bovine kidney) cells with pCMV-El-neo, which contain the bacterial selectable marker neo gene. A series of MDBK-derived cell lines, that constitutively express bovine adenoviral (BAV) early region 1 (El), were then isolated. Cells selected for resistance to the drug G418 were isolated collectively for full characterisation to assess their suitability as packaging cell lines. Individual colonies were isolated by limiting dilution and further tested for El expression and efficiency of DNA uptake. Two cell lines, L-23 and L-24, out of 48 generated foci tested positive for £1 expression using Northern Blot analysis. DNA uptake studies, using both lipofectamine and calcium phosphate methods, were performed to compare these cells, their parental MDBK cells, 8 and the unrelated human 293 cells as a benchmark. The results revealed that the new MDBKderived clones were no more efficient than MDBK cells in the transient expression of transfected DNA and that they were inferior to 293 cells, when using lacZ as the reporter gene. In view of the inherently poor transfection efficiency of MDBK cells and their derivatives, a number of other bovine cells were investigated for their potential as packaging cells. The cell line CCL40 was chosen for its high efficiency in DNA uptake and subsequently transfected with the plasmid vector pCMV El-neo. By selection with the drug G418, two cell lines were isolated, ProCell 1 and ProCell 2. These cell lines were tested for El expression, permissivity to BAV2 and DNA uptake efficiency, revealing a DNA uptake efficiency of 37 % , comparable to that of CCL40. Attempts to rescue BAV2 mutants carrying the lacZ gene in place of £1 or £3 were carried out by co-transfecting wild type viral DNA with either the plasmid pdlElE-Z (which contains BAV2 sequences from 0% to 40.4% with the lacZ gene in place of the £1 region from 1.1% to 8.25%) or with the plasmid pdlE3-5-Z (which contains BAV2 sequences from 64.8% to 100% with the lacZ gene in place of the E3 region from 75.8% to 81.4%). These cotransfections did not result in the generation of a viral mutant. The lack of mutant generation was thought to be caused by the relative inefficiency ofDNA uptake. Consequently, cosBAV2, a cosmid vector carrying the BAV2 genome, was modified to carry the neo reporter gene in place of the £3 region from 75.8% to 81.4%. The use of a single cosmid vector earring the whole genome would eliminate the need for homologous recombination in order to generate a viral vector. Unfortunately, the transfection of cosBAV2- neo also did not result in the generation of a viral mutant. This may have been caused by the size of the £3 deletion, where excess sequences that are essential to the virus' survival might have been deleted. As an extension to this study, the spontaneous E3 deletion, accidently discovered in our viral stock, could be used as site of foreign gene insertion.
Resumo:
Recombinant human adenovirus (Ad) vectors are being extensively explored for their use in gene therapy and recombinant vaccines. Ad vectors are attractive for many reasons, including the fact that (1) they are relatively safe, based on their use as live oral vaccines, (2) they can accept large transgene inserts, (3) they can infect dividing and postmitotic cells, and (4) they can be produced to high titers. However, there are also a number of major problems associated with Ad vectors, including transient foreign gene expression due to host cellular immune responses, problems with humoral immunity, and the creation of replication competent adenoviruses (RCA). Most Ad vectors contain deletions in the E1 region that allow for insertion of a transgene. However, the E1 gene products are required for replication and thus must be supplied in trans by a helper ceillille that will allow for the growth and packaging of the defective virus. For this purpose the 293 cell line (Graham et al., 1977) is used most often; however, homologous recombination between the vector and the cell line often results in the generation of RCA. The presence of RCA in batches of adenoviral vectors for clinical use is a safety risk because tlley . may result in the mobilization and spread of the replication-defective vector viruses, and in significant tissue damage and pathogenicity. The present research focused on the alteration of the 293 cell line such that RCA formation can be eliminated. The strategy to modify the 293 cells involved the removal of the first 380 bp of the adenovirus genome through the process of homologous recombination. The first step towards this goal involved identifying and cloning the left-end cellular-viral jUl1ction from 293 cells to assemble sequences required for homologous recombination. Polymerase chain reaction (PCR) was performed to clone the junction, and the clone was verified through sequencing. The plasn1id PAM2 was then constructed, which served as the targeting cassette used to modify the 293 cells. The cassette consisted of (1) the cellular-viral junction as the left-end region of homology, (2) the neo gene to use for positive selection upon tranfection into 293 cells, (3) the adenoviral genome from bp 380 to bp 3438 as the right-end region of homology, and (4) the HSV-tk gene to use for negative selection. The plasmid PAM2 was linearized to produce a double strand break outside the region of homology, and transfected into 293 cells using the calcium-phosphate technique. Cells were first selected for their resistance to the drug G418, and subsequently for their resistance to the drug Gancyclovir (GANC). From 17 transfections, 100 pools of G418f and GANCf cells were picked using cloning lings and expanded for screening. Genomic DNA was isolated from the pools and screened for the presence of the 380 bps using PCR. Ten of the most promising pools were diluted to single cells and expanded in order to isolate homogeneous cell lines. From these, an additional 100 G41Sf and GANef foci were screened. These preliminary screening results appear promising for the detection of the desired cell line. Future work would include further cloning and purification of the promising cell lines that have potentially undergone homologous recombination, in order to isolate a homogeneous cell line of interest.
Resumo:
The neuropeptide Th1RFamide with the sequence Phe-Met-Arg-Phe-amide was originally isolated in the clam Macrocallista nimbosa (price and Greenberg, 1977). Since its discovery, a large family ofFl\1RFamide-related peptides termed FaRPs have been found to be present in all major animal phyla with functions ranging from modulation of neuronal activity to alteration of muscular contractions. However, little is known about the genetics encoding these peptides, especially in invertebrates. As FaRP-encoding genes have yet to be investigated in the invertebrate Malacostracean subphylum, the isolation and characterization ofFaRP-encoding DNA and mRNA was pursued in this project. The immediate aims of this thesis were: (1) to amplify mRNA sequences of Procambarus clarkii using a degenerate oligonucleotide primer deduced from the common amino acid sequence ofisolated Procambarus FaRPS, (2) to determine if these amplification products encode FaRP gene sequences, and (3) to create a selective cDNA library of sequences recognized by the degenerate oligonucleotide primer. The polymerase chain reaction - rapid amplification of cDNA ends (PCR-RACE) is a procedure in which a single gene-specific primer is used in conjunction with a generalized 3' or 5' primer to amplify copies ofthe region between a single point in the transcript and the 3' or 5' end of cDNA of interest (Frohman et aI., 1988). PCRRACE reactions were optimized with respect to primers used, buffer composition, cycle number, nature ofgenetic substrate to be amplified, annealing, extension and denaturation temperatures and times, and use of reamplification procedures. Amplification products were cloned into plasmid vectors and recombinant products were isolated, as were the recombinant plaques formed in the selective cDNA library. Labeled amplification products were hybridized to recombinant bacteriophage to determine ligated amplification product presence. When sequenced, the five isolated PCR-RACE amplification products were determined not to possess FaRP-encoding sequences. The 200bp, 450bp, and 1500bp sequences showed homology to the Caenorhabditis elegans cosmid K09A11, which encodes for cytochrome P450; transfer-RNA; transposase; and tRNA-Tyr, while the 500bp and 750bp sequences showed homology with the complete genome of the Vaccinia virus. Under the employed amplification conditions the degenerate oligonucleotide primer was observed to bind to and to amplify sequences with either 9 or 10bp of 17bp identity. The selective cDNA library was obselVed to be of extremely low titre. When library titre was increased, white. plaques were isolated. Amplification analysis of eight isolated Agt11 sequences from these plaques indicated an absence of an insertion sequence. The degenerate 17 base oligonucleotide primer synthesized from the common amino acid sequence ofisolated Procambarus FaRPs was thus determined to be non-specific in its binding under the conditions required for its use, and to be insufficient for the isolation and identification ofFaRP-encoding sequences. A more specific primer oflonger sequence, lower degeneracy, and higher melting temperature (TJ is recommended for further investigation into the FaRP-encoding genes of Procambarlls clarkii.
Resumo:
The manipulation of large (>10 kb) plasmid systems amplifies problems common to traditional cloning strategies. Unique or rare restriction enzyme recognition sequences are uncommon and very rarely located in opportunistic locations. Making site-specific deletions and insertions in larger plasmids consequently leads to multiple step cloning strategies that are often limited by time-consuming, low efficiency linker insertions or blunt-end cloning strategies. Manipulation ofthe adenovirus genome and the genomes ofother viruses as bacterial plasmids are systems that typify such situations. Recombinational cloning techniques based on homologous recombination in Saccharomyces cerevisiae that circumvent many ofthese common problems have been developed. However, these techniques are rarely realistic options for such large plasmid systems due to the above mentioned difficulties associated with the addition ofrequired yeast DNA replication, partitioning and selectable marker sequences. To determine ifrecombinational cloning techniques could be modified to simplify the manipulation of such a large plasmid system, a recombinational cloning system for the creation of human adenovirus EI-deletion rescue plasmids was developed. Here we report for the first time that the 1,456 bp TRP1/ARS fragment ofYRp7 is alone sufficient to foster successful recombinational cloning without additional partitioning sequences, using only slight modifications of existing protocols. In addition, we describe conditions for efficient recombinational cloning involving simultaneous deletion of large segments ofDNA (>4.2 kb) and insertion of donor fragment DNA using only a single non-unique restriction site. The discovery that recombinational cloning can foster large deletions has been used to develop a novel recombiliational cloillng technique, selectable inarker 'kilockouf" recombinational cloning, that uses deletion of a yeast selectable marker coupled with simultaneous negative and positive selection to reduce background transformants to undetectable levels. The modification of existing protocols as described in this report facilitates the use of recombinational cloning strategies that are otherwise difficult or impractical for use with large plasmid systems. Improvement of general recombinational cloning strategies and strategies specific to the manipulation ofthe adenovirus genome are considered in light of data presented herein.
Resumo:
The nucleotide sequence of a genomic DNA fragment thought previously to contain the dihydrofolate reductase gene (DFR1) of Saccharomyces cerevisiae by genetic criteria was determined. This DNA fragment of 1784' basepairs contains a large open reading frame from position 800 to 1432, which encodes a enzyme with a predicted molecular weight of 24,229.8 Daltons. Analysis of the amino acid sequence of this protein revealed that the yeast polypep·tide contained 211 amino acids, compared to the 186 residues commonly found in the polypeptides of other eukaryotes. The difference in size of the gene product can be attributed mainly to an insert in the yeast gene. Within this region, several consensus sequences required for processing of yeast nuclear and class II mitochondrial introns were identified, but appear not sufficient for the RNA splicing. The primary structure of the yeast DHFR protein has considerable sequence homology with analogous polypeptides from other organisms, especially in the consensus residues involved in cofactor and/or inhibitor binding. Analysis of the nucleotide sequence also revealed the presence of a number of canonical sequences identified in yeast as having some function in the regulation of gene expression. These include UAS elements (TGACTC) required for tIle amino acid general control response, and "TATA H boxes as well as several consensus sequences thought to be required for transcriptional termination and polyadenylation. Analysis of the codon usage of the yeast DFRl coding region revealed a codon bias index of 0.0083. this valve very close to zero suggestes 3 that the gene is expressed at a relatively low level under normal physiological conditions. The information concerning the organization of the DFRl were used to construct a variety of fusions of its 5' regulatory region with the coding region of the lacZ gene of E. coli. Some of such fused genes encoded a fusion product that expressed in E.coli and/or in yeast under the control of the 5' regulatory elements of the DFR1. Further studies with these fusion constructions revealed that the beta-galactosidase activity encoded on multicopy plasmids was stimulated transiently by prior exposure of yeast host cells to UV light. This suggests that the yeast PFRl gene is indu.ced by UV light and nlay in1ply a novel function of DHFR protein in the cellular responses to DNA damage. Another novel f~ature of yeast DHFR was revealed during preliminary studies of a diploid strain containing a heterozygous DFRl null allele. The strain was constructed by insertion of a URA3 gene within the coding region of DFR1. Sporulation of this diploid revealed that meiotic products segregated 2:0 for uracil prototrophy when spore clones were germinated on medium supplemented with 5-formyltetrahydrofolate (folinic acid). This finding suggests that, in addition to its catalytic activity, the DFRl gene product nlay play some role in the anabolisln of folinic acid. Alternatively, this result may indicate that Ura+ haploid segregants were inviable and suggest that the enzyme has an essential cellular function in this species.