968 resultados para Multiple reaction monitoring


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current industry trend is towards using Commercially available Off-The-Shelf (COTS) based multicores for developing real time embedded systems, as opposed to the usage of custom-made hardware. In typical implementation of such COTS-based multicores, multiple cores access the main memory via a shared bus. This often leads to contention on this shared channel, which results in an increase of the response time of the tasks. Analyzing this increased response time, considering the contention on the shared bus, is challenging on COTS-based systems mainly because bus arbitration protocols are often undocumented and the exact instants at which the shared bus is accessed by tasks are not explicitly controlled by the operating system scheduler; they are instead a result of cache misses. This paper makes three contributions towards analyzing tasks scheduled on COTS-based multicores. Firstly, we describe a method to model the memory access patterns of a task. Secondly, we apply this model to analyze the worst case response time for a set of tasks. Although the required parameters to obtain the request profile can be obtained by static analysis, we provide an alternative method to experimentally obtain them by using performance monitoring counters (PMCs). We also compare our work against an existing approach and show that our approach outperforms it by providing tighter upper-bound on the number of bus requests generated by a task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective and usable WSN system architectures that address both functional and non-functional requirements in an integrated fashion. This poster outlines the EMMON system architecture for large-scale, dense, real-time embedded monitoring. It provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to maintain as much as flexibility as possible while meeting specific applications requirements. EMMON has been validated through extensive analytical, simulation and experimental evaluations, including through a 300+ nodes test-bed the largest single-site WSN test-bed in Europe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective, feasible and usable system architectures that address both functional and non-functional requirements in an integrated fashion. In this paper, we outline the EMMON system architecture for large-scale, dense, real-time embedded monitoring. EMMON provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to use standard commercially-available technologies, while maintaining as much flexibility as possible to meet specific applications requirements. The EMMON architecture has been validated through extensive simulation and experimental evaluation, including a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Operational Modal Analysis is currently applied in structural dynamic monitoring studies using conventional wired based sensors and data acquisition platforms. This approach, however, becomes inadequate in cases where the tests are performed in ancient structures with esthetic concerns or in others, where the use of wires greatly impacts the monitoring system cost and creates difficulties in the maintenance and deployment of data acquisition platforms. In these cases, the use of sensor platforms based on wireless and MEMS would clearly benefit these applications. This work presents a first attempt to apply this wireless technology to the structural monitoring of historical masonry constructions in the context of operational modal analysis. Commercial WSN platforms were used to study one laboratory specimen and one of the structural elements of a XV century building in Portugal. Results showed that in comparison to the conventional wired sensors, wireless platforms have poor performance in respect to the acceleration time series recorded and the detection of modal shapes. However, for frequency detection issues, reliable results were obtained, especially when random excitation was used as noise source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wind energy is considered a hope in future as a clean and sustainable energy, as can be seen by the growing number of wind farms installed all over the world. With the huge proliferation of wind farms, as an alternative to the traditional fossil power generation, the economic issues dictate the necessity of monitoring systems to optimize the availability and profits. The relatively high cost of operation and maintenance associated to wind power is a major issue. Wind turbines are most of the time located in remote areas or offshore and these factors increase the referred operation and maintenance costs. Good maintenance strategies are needed to increase the health management of wind turbines. The objective of this paper is to show the application of neural networks to analyze all the wind turbine information to identify possible future failures, based on previous information of the turbine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of every wind energy producer is to reduce operational costs associated to the production as a way to increase profits. One other issue that must be looked carefully is the equipment maintenance. Increase the availability of wind turbines by reducing the downtime associated to failures is a good strategy to achieve the main goal of increase profits. As a way to help in the definition of the best maintenance strategies, condition monitoring systems (CMS) have an important role to play. Informatics tools to make the condition monitoring of the wind turbines were developed and are now being installed as a way to help producers reducing the operational costs. There are a lot of developed systems to do the monitoring of a wind turbine or the whole wind park, in this paper will be made an overview of the most important systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a wireless medium access control (MAC) protocol that provides static-priority scheduling of messages in a guaranteed collision-free manner. Our protocol supports multiple broadcast domains, resolves the wireless hidden terminal problem and allows for parallel transmissions across a mesh network. Arbitration of messages is achieved without the notion of a master coordinating node, global clock synchronization or out-of-band signaling. The protocol relies on bit-dominance similar to what is used in the CAN bus except that in order to operate on a wireless physical layer, nodes are not required to receive incoming bits while transmitting. The use of bit-dominance efficiently allows for a much larger number of priorities than would be possible using existing wireless solutions. A MAC protocol with these properties enables schedulability analysis of sporadic message streams in wireless multihop networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authoritarian regime of the Portuguese Estado Novo (New State), the longest dictatorship in twentieth-century Western Europe, suffered one of its most serious threats during the late 1950s and the whole of the following decade. An array of events and dynamics of opposition to the regime and condemnation of the political and social situation in Portugal appeared at that time. One of the core groups that displayed their dissidence in the 1960s, with the awakening of their critical conscience, originated in Catholic sectors that rallied the laity and the clergy to express their disagreement or even break with the government of Salazar (and, later, Marcelo Caetano). This article aims to establish the role of print culture and, in particular, publishing in the opposition’s mobilisation of Catholics who criticised the Estado Novo. It will also closely examine the contribution of certain publishers to the formulation of the terms of this mobilisation, in publishing new authors and topics and creating new printed forums (e.g. periodicals) for discussion and reflection. The most detailed case will be that of the publishing house Livraria Moraes Editora, under the command of the publisher António Alçada Baptista.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Thesis describes the application of automatic learning methods for a) the classification of organic and metabolic reactions, and b) the mapping of Potential Energy Surfaces(PES). The classification of reactions was approached with two distinct methodologies: a representation of chemical reactions based on NMR data, and a representation of chemical reactions from the reaction equation based on the physico-chemical and topological features of chemical bonds. NMR-based classification of photochemical and enzymatic reactions. Photochemical and metabolic reactions were classified by Kohonen Self-Organizing Maps (Kohonen SOMs) and Random Forests (RFs) taking as input the difference between the 1H NMR spectra of the products and the reactants. The development of such a representation can be applied in automatic analysis of changes in the 1H NMR spectrum of a mixture and their interpretation in terms of the chemical reactions taking place. Examples of possible applications are the monitoring of reaction processes, evaluation of the stability of chemicals, or even the interpretation of metabonomic data. A Kohonen SOM trained with a data set of metabolic reactions catalysed by transferases was able to correctly classify 75% of an independent test set in terms of the EC number subclass. Random Forests improved the correct predictions to 79%. With photochemical reactions classified into 7 groups, an independent test set was classified with 86-93% accuracy. The data set of photochemical reactions was also used to simulate mixtures with two reactions occurring simultaneously. Kohonen SOMs and Feed-Forward Neural Networks (FFNNs) were trained to classify the reactions occurring in a mixture based on the 1H NMR spectra of the products and reactants. Kohonen SOMs allowed the correct assignment of 53-63% of the mixtures (in a test set). Counter-Propagation Neural Networks (CPNNs) gave origin to similar results. The use of supervised learning techniques allowed an improvement in the results. They were improved to 77% of correct assignments when an ensemble of ten FFNNs were used and to 80% when Random Forests were used. This study was performed with NMR data simulated from the molecular structure by the SPINUS program. In the design of one test set, simulated data was combined with experimental data. The results support the proposal of linking databases of chemical reactions to experimental or simulated NMR data for automatic classification of reactions and mixtures of reactions. Genome-scale classification of enzymatic reactions from their reaction equation. The MOLMAP descriptor relies on a Kohonen SOM that defines types of bonds on the basis of their physico-chemical and topological properties. The MOLMAP descriptor of a molecule represents the types of bonds available in that molecule. The MOLMAP descriptor of a reaction is defined as the difference between the MOLMAPs of the products and the reactants, and numerically encodes the pattern of bonds that are broken, changed, and made during a chemical reaction. The automatic perception of chemical similarities between metabolic reactions is required for a variety of applications ranging from the computer validation of classification systems, genome-scale reconstruction (or comparison) of metabolic pathways, to the classification of enzymatic mechanisms. Catalytic functions of proteins are generally described by the EC numbers that are simultaneously employed as identifiers of reactions, enzymes, and enzyme genes, thus linking metabolic and genomic information. Different methods should be available to automatically compare metabolic reactions and for the automatic assignment of EC numbers to reactions still not officially classified. In this study, the genome-scale data set of enzymatic reactions available in the KEGG database was encoded by the MOLMAP descriptors, and was submitted to Kohonen SOMs to compare the resulting map with the official EC number classification, to explore the possibility of predicting EC numbers from the reaction equation, and to assess the internal consistency of the EC classification at the class level. A general agreement with the EC classification was observed, i.e. a relationship between the similarity of MOLMAPs and the similarity of EC numbers. At the same time, MOLMAPs were able to discriminate between EC sub-subclasses. EC numbers could be assigned at the class, subclass, and sub-subclass levels with accuracies up to 92%, 80%, and 70% for independent test sets. The correspondence between chemical similarity of metabolic reactions and their MOLMAP descriptors was applied to the identification of a number of reactions mapped into the same neuron but belonging to different EC classes, which demonstrated the ability of the MOLMAP/SOM approach to verify the internal consistency of classifications in databases of metabolic reactions. RFs were also used to assign the four levels of the EC hierarchy from the reaction equation. EC numbers were correctly assigned in 95%, 90%, 85% and 86% of the cases (for independent test sets) at the class, subclass, sub-subclass and full EC number level,respectively. Experiments for the classification of reactions from the main reactants and products were performed with RFs - EC numbers were assigned at the class, subclass and sub-subclass level with accuracies of 78%, 74% and 63%, respectively. In the course of the experiments with metabolic reactions we suggested that the MOLMAP / SOM concept could be extended to the representation of other levels of metabolic information such as metabolic pathways. Following the MOLMAP idea, the pattern of neurons activated by the reactions of a metabolic pathway is a representation of the reactions involved in that pathway - a descriptor of the metabolic pathway. This reasoning enabled the comparison of different pathways, the automatic classification of pathways, and a classification of organisms based on their biochemical machinery. The three levels of classification (from bonds to metabolic pathways) allowed to map and perceive chemical similarities between metabolic pathways even for pathways of different types of metabolism and pathways that do not share similarities in terms of EC numbers. Mapping of PES by neural networks (NNs). In a first series of experiments, ensembles of Feed-Forward NNs (EnsFFNNs) and Associative Neural Networks (ASNNs) were trained to reproduce PES represented by the Lennard-Jones (LJ) analytical potential function. The accuracy of the method was assessed by comparing the results of molecular dynamics simulations (thermal, structural, and dynamic properties) obtained from the NNs-PES and from the LJ function. The results indicated that for LJ-type potentials, NNs can be trained to generate accurate PES to be used in molecular simulations. EnsFFNNs and ASNNs gave better results than single FFNNs. A remarkable ability of the NNs models to interpolate between distant curves and accurately reproduce potentials to be used in molecular simulations is shown. The purpose of the first study was to systematically analyse the accuracy of different NNs. Our main motivation, however, is reflected in the next study: the mapping of multidimensional PES by NNs to simulate, by Molecular Dynamics or Monte Carlo, the adsorption and self-assembly of solvated organic molecules on noble-metal electrodes. Indeed, for such complex and heterogeneous systems the development of suitable analytical functions that fit quantum mechanical interaction energies is a non-trivial or even impossible task. The data consisted of energy values, from Density Functional Theory (DFT) calculations, at different distances, for several molecular orientations and three electrode adsorption sites. The results indicate that NNs require a data set large enough to cover well the diversity of possible interaction sites, distances, and orientations. NNs trained with such data sets can perform equally well or even better than analytical functions. Therefore, they can be used in molecular simulations, particularly for the ethanol/Au (111) interface which is the case studied in the present Thesis. Once properly trained, the networks are able to produce, as output, any required number of energy points for accurate interpolations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rehabilitation is very important for in the results of treatment in individuals with multiple sclerosis. Rehabilitation processes occur through gradual changes. These changes integrate intrinsic and extrinsic mechanisms of the individual, promoting adaptations to the needs and activities of daily living according to individual goals. Recommendations for exercise in multiple sclerosis: these recommendations apply only to patients with EDSS less than 7; moderate intensity aerobic exercise for a total of 20 to 30 minutes, twice or three times for week; the resistance training with low or moderate intensity is well tolerated by patients with MS; associated with these exercises were recommended flexibility exercises of moderate intensity, as well as strengthening exercises. The aim of this study is to examine the implications of the program of self-regulation in the perception of illness and mental health (psychological well-being domain) in multiple sclerosis patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Multiple Sclerosis (MS) is a chronic disease of the central nervous system that affects more often young adults in the prime of his career and personal development, with no cure and unknown causes. The most common signs and symptoms are fatigue, muscle weakness, changes in sensation, ataxia, changes in balance, gait difficulties, memory difficulties, cognitive impairment and difficulties in problem solving MS is a relatively common neurological disorder in which various impairments and disabilities impact strongly on function and daily life activities. Purpose: The aim of this study is to examine the implications of an Intervention Program of Physical Activity (IPPA) in quality of life in MS patients, six months after the intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Multiple sclerosis is a disease of the central nervous system that affects more frequently young women. It is a progressive and unpredictable disease, resulting in some cases of disabilities and limitations to physical, psychological and social level. Purpose: To review the literature for evidence based of the effectiveness of physiotherapy intervention in multiple sclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Gestão e Sistemas Ambientais

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering that recent european high-speed railway system has a traction power system of kV 50 Hz, which causes electromagnetic emission for the outside world, it is important to dimension the railway system emissions, using a frequency/distance dependent propagation model. This paper presents an enhanced theoretical model for VLF to UHF propagation, railway system oriented. It introduces the near field approach (crucial in low frequency propagation) and also considers the source characteristics and type of measuring antenna. Simulations are presented, and comparisons are set with earlier far field models. Using the developed model, a real case study was performed in partnership with Refer Telecom (portuguese telecom operator for railways). The new propagation model was used in order to predict the future high-speed railway electromagnetic emissions in the Lisbon north track. The results show the model's prediction capabilities and also its applicability to realistic scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waste oil recycling companies play a very important role in our society. Competition among companies is tough and process optimization is essential for survival. By equipping oil containers with a level monitoring system that periodically reports the level and alerts when it reaches the preset threshold, the oil recycling companies are able to streamline the oil collection process and, thus, reduce the operation costs while maintaining the quality of service. This paper describes the development of this level monitoring system by a team of four students from different engineering backgrounds and nationalities. The team conducted a study of the state of the art, draw marketing and sustainable development plans and, finally, designed and implemented a prototype that continuously measures the container content level and sends an alert message as soon as it reaches the preset capacity.