976 resultados para Multiparty computation
Resumo:
Pollutants that once enter into the earth’s atmosphere become part of the atmosphere and hence their dispersion, dilution, direction of transportation etc. are governed by the meteorological conditions. The thesis deals with the study of the atmospheric dispersion capacity, wind climatology, atmospheric stability, pollutant distribution by means of a model and the suggestions for a comprehensive planning for the industrially developing city, Cochin. The definition, sources, types and effects of air pollution have been dealt with briefly. The influence of various meteorological parameters such as vector wind, temperature and its vertical structure and atmospheric stability in relation to pollutant dispersal have been studied. The importance of inversions, mixing heights, ventilation coefficients were brought out. The spatial variation of mixing heights studies for the first time on a microscale region, serves to delineate the regions of good and poor dispersal capacity. A study of wind direction fluctuation, σθ and its relation to stability and mixing heights were shown to be much useful. It was shown that there is a necessity to look into the method of σθ computation. The development of Gausssian Plume Model along with the application for multiple sources was presented. The pollutant chosen was sulphur dioxide and industrial sources alone were considered. The percentage frequency of occurrence of inversions and isothermals are found to be low in all months during the year. The spatial variation of mixing heights revealed that a single mixing height cannot be taken as a representative for the whole city have low mixing heights and monsoonal months showed lowest mixing heights. The study of ventilation co-efficients showed values less than the required optimum value 6000m2/5. However, the low values may be due to the consideration of surface wind alone instead of the vertically averaged wind. Relatively more calm conditions and light winds during night and strong winds during day time were observed. During the most of the year westerlies during day time and northeasterlies during night time are the dominant winds. Unstable conditions with high values of σθ during day time and stable conditions with lower values of σθ during night time are the prominent features. Monsoonal months showed neutral stability for most of the time. A study σθ of and Pasquill Stability category has revealed the difficulty in giving a unique value of for each stability category. For the first time regression equations have been developed relating mixing heights and σθ. A closer examination of σθ revealed that half of the range of wind direction fluctuations is to be taken, instead of one by sixth, to compute σθ. The spatial distribution of SO2 showed a more or less uniform distribution with a slight intrusion towards south. Winter months showed low concentrations contrary to the expectations. The variations of the concentration is found to be influenced more by the mixing height and the stack height rather than wind speed. In the densely populated areas the concentration is more than the threshold limit value. However, the values reported appear to be high, because no depletion of the material is assumed through dry or wet depositions and also because of the inclusion of calm conditions with a very light wind speed. A reduction of emission during night time with a consequent rise during day time would bring down the levels of pollution. The probable locations for the new industries could be the extreme southeast parts because the concentration towards the north falls off very quickly resulting low concentrations. In such a case pollutant spread would be towards south and west, thus keeping the city interior relatively free from pollution. A more detailed examination of the pollutant spread by means of models that would take the dry and wet depositions may be necessary. Nevertheless, the present model serves to give the trend of the distribution of pollutant concentration with which one can suggest the optimum locations for the new industries
Resumo:
The results of an investigation on the limits of the random errors contained in the basic data of Physical Oceanography and their propagation through the computational procedures are presented in this thesis. It also suggest a method which increases the reliability of the derived results. The thesis is presented in eight chapters including the introductory chapter. Chapter 2 discusses the general theory of errors that are relevant in the context of the propagation of errors in Physical Oceanographic computations. The error components contained in the independent oceanographic variables namely, temperature, salinity and depth are deliniated and quantified in chapter 3. Chapter 4 discusses and derives the magnitude of errors in the computation of the dependent oceanographic variables, density in situ, gt, specific volume and specific volume anomaly, due to the propagation of errors contained in the independent oceanographic variables. The errors propagated into the computed values of the derived quantities namely, dynamic depth and relative currents, have been estimated and presented chapter 5. Chapter 6 reviews the existing methods for the identification of level of no motion and suggests a method for the identification of a reliable zero reference level. Chapter 7 discusses the available methods for the extension of the zero reference level into shallow regions of the oceans and suggests a new method which is more reliable. A procedure of graphical smoothening of dynamic topographies between the error limits to provide more reliable results is also suggested in this chapter. Chapter 8 deals with the computation of the geostrophic current from these smoothened values of dynamic heights, with reference to the selected zero reference level. The summary and conclusion are also presented in this chapter.
Resumo:
This thesis investigates the potential use of zerocrossing information for speech sample estimation. It provides 21 new method tn) estimate speech samples using composite zerocrossings. A simple linear interpolation technique is developed for this purpose. By using this method the A/D converter can be avoided in a speech coder. The newly proposed zerocrossing sampling theory is supported with results of computer simulations using real speech data. The thesis also presents two methods for voiced/ unvoiced classification. One of these methods is based on a distance measure which is a function of short time zerocrossing rate and short time energy of the signal. The other one is based on the attractor dimension and entropy of the signal. Among these two methods the first one is simple and reguires only very few computations compared to the other. This method is used imtea later chapter to design an enhanced Adaptive Transform Coder. The later part of the thesis addresses a few problems in Adaptive Transform Coding and presents an improved ATC. Transform coefficient with maximum amplitude is considered as ‘side information’. This. enables more accurate tfiiz assignment enui step—size computation. A new bit reassignment scheme is also introduced in this work. Finally, sum ATC which applies switching between luiscrete Cosine Transform and Discrete Walsh-Hadamard Transform for voiced and unvoiced speech segments respectively is presented. Simulation results are provided to show the improved performance of the coder
Resumo:
Biometrics deals with the physiological and behavioral characteristics of an individual to establish identity. Fingerprint based authentication is the most advanced biometric authentication technology. The minutiae based fingerprint identification method offer reasonable identification rate. The feature minutiae map consists of about 70-100 minutia points and matching accuracy is dropping down while the size of database is growing up. Hence it is inevitable to make the size of the fingerprint feature code to be as smaller as possible so that identification may be much easier. In this research, a novel global singularity based fingerprint representation is proposed. Fingerprint baseline, which is the line between distal and intermediate phalangeal joint line in the fingerprint, is taken as the reference line. A polygon is formed with the singularities and the fingerprint baseline. The feature vectors are the polygonal angle, sides, area, type and the ridge counts in between the singularities. 100% recognition rate is achieved in this method. The method is compared with the conventional minutiae based recognition method in terms of computation time, receiver operator characteristics (ROC) and the feature vector length. Speech is a behavioural biometric modality and can be used for identification of a speaker. In this work, MFCC of text dependant speeches are computed and clustered using k-means algorithm. A backpropagation based Artificial Neural Network is trained to identify the clustered speech code. The performance of the neural network classifier is compared with the VQ based Euclidean minimum classifier. Biometric systems that use a single modality are usually affected by problems like noisy sensor data, non-universality and/or lack of distinctiveness of the biometric trait, unacceptable error rates, and spoof attacks. Multifinger feature level fusion based fingerprint recognition is developed and the performances are measured in terms of the ROC curve. Score level fusion of fingerprint and speech based recognition system is done and 100% accuracy is achieved for a considerable range of matching threshold
Resumo:
Motivation for Speaker recognition work is presented in the first part of the thesis. An exhaustive survey of past work in this field is also presented. A low cost system not including complex computation has been chosen for implementation. Towards achieving this a PC based system is designed and developed. A front end analog to digital convertor (12 bit) is built and interfaced to a PC. Software to control the ADC and to perform various analytical functions including feature vector evaluation is developed. It is shown that a fixed set of phrases incorporating evenly balanced phonemes is aptly suited for the speaker recognition work at hand. A set of phrases are chosen for recognition. Two new methods are adopted for the feature evaluation. Some new measurements involving a symmetry check method for pitch period detection and ACE‘ are used as featured. Arguments are provided to show the need for a new model for speech production. Starting from heuristic, a knowledge based (KB) speech production model is presented. In this model, a KB provides impulses to a voice producing mechanism and constant correction is applied via a feedback path. It is this correction that differs from speaker to speaker. Methods of defining measurable parameters for use as features are described. Algorithms for speaker recognition are developed and implemented. Two methods are presented. The first is based on the model postulated. Here the entropy on the utterance of a phoneme is evaluated. The transitions of voiced regions are used as speaker dependent features. The second method presented uses features found in other works, but evaluated differently. A knock—out scheme is used to provide the weightage values for the selection of features. Results of implementation are presented which show on an average of 80% recognition. It is also shown that if there are long gaps between sessions, the performance deteriorates and is speaker dependent. Cross recognition percentages are also presented and this in the worst case rises to 30% while the best case is 0%. Suggestions for further work are given in the concluding chapter.
Resumo:
Thermodynamic parameters of the atmosphere form part of the input to numerical forecasting models. Usually these parameters are evaluated from a thermodynamic diagram. Here, a technique is developed to evaluate these parameters quickly and accurately using a Fortran program. This technique is tested with four sets of randomly selected data and the results are in agreement with the results from the conventional method. This technique is superior to the conventional method in three respects: more accuracy, less computation time, and evaluation of additional parameters. The computation time for all the parameters on a PC AT 286 machine is II sec. This software, with appropriate modifications, can be used, for verifying various lines on a thermodynamic diagram
Resumo:
Oceans play a vital role in the global climate system. They absorb the incoming solar energy and redistribute the energy through horizontal and vertical transports. In this context it is important to investigate the variation of heat budget components during the formation of a low-pressure system. In 2007, the monsoon onset was on 28th May. A well- marked low-pressure area was formed in the eastern Arabian Sea after the onset and it further developed into a cyclone. We have analysed the heat budget components during different stages of the cyclone. The data used for the computation of heat budget components is Objectively Analyzed air-sea flux data obtained from WHOI (Woods Hole Oceanographic Institution) project. Its horizontal resolution is 1° × 1°. Over the low-pressure area, the latent heat flux was 180 Wm−2. It increased to a maximum value of 210 Wm−2 on 1st June 2007, on which the system was intensified into a cyclone (Gonu) with latent heat flux values ranging from 200 to 250 Wm−2. It sharply decreased after the passage of cyclone. The high value of latent heat flux is attributed to the latent heat release due to the cyclone by the formation of clouds. Long wave radiation flux is decreased sharply from 100 Wm−2 to 30 Wm−2 when the low-pressure system intensified into a cyclone. The decrease in long wave radiation flux is due to the presence of clouds. Net heat flux also decreases sharply to −200 Wm−2 on 1st June 2007. After the passage, the flux value increased to normal value (150 Wm−2) within one day. A sharp increase in the sensible heat flux value (20 Wm−2) is observed on 1st June 2007 and it decreased there- after. Short wave radiation flux decreased from 300 Wm−2 to 90 Wm−2 during the intensification on 1st June 2007. Over this region, short wave radiation flux sharply increased to higher value soon after the passage of the cyclone.
Resumo:
The objective of the study of \Queueing models with vacations and working vacations" was two fold; to minimize the server idle time and improve the e ciency of the service system. Keeping this in mind we considered queueing models in di erent set up in this thesis. Chapter 1 introduced the concepts and techniques used in the thesis and also provided a summary of the work done. In chapter 2 we considered an M=M=2 queueing model, where one of the two heterogeneous servers takes multiple vacations. We studied the performance of the system with the help of busy period analysis and computation of mean waiting time of a customer in the stationary regime. Conditional stochastic decomposition of queue length was derived. To improve the e ciency of this system we came up with a modi ed model in chapter 3. In this model the vacationing server attends the customers, during vacation at a slower service rate. Chapter 4 analyzed a working vacation queueing model in a more general set up. The introduction of N policy makes this MAP=PH=1 model di erent from all working vacation models available in the literature. A detailed analysis of performance of the model was provided with the help of computation of measures such as mean waiting time of a customer who gets service in normal mode and vacation mode.
Resumo:
The thesis relates to the investigations carried out on Rectangular Dielectric Resonator Antenna configurations suitable for Mobile Communication applications. The main objectives of the research are to: - numerically compute the radiation characteristics of a Rectangular DRA - identify the resonant modes - validate the numerically predicted data through simulation and experiment 0 ascertain the influence of the geometrical and material parameters upon the radiation behaviour of the antenna ° develop compact Rectangular DRA configurations suitable for Mobile Communication applications Although approximate methods exist to compute the resonant frequency of Rectangular DRA’s, no rigorous analysis techniques have been developed so far to evaluate the resonant modes. In this thesis a 3D-FDTD (Finite Difference Time Domain) Modeller is developed using MATLAB® for the numerical computation of the radiation characteristics of the Rectangular DRA. The F DTD method is a powerful yet simple algorithm that involves the discretimtion and solution of the derivative form of Maxwell’s curl equations in the time domain.
Resumo:
This paper proposes a region based image retrieval system using the local colour and texture features of image sub regions. The regions of interest (ROI) are roughly identified by segmenting the image into fixed partitions, finding the edge map and applying morphological dilation. The colour and texture features of the ROIs are computed from the histograms of the quantized HSV colour space and Gray Level co- occurrence matrix (GLCM) respectively. Each ROI of the query image is compared with same number of ROIs of the target image that are arranged in the descending order of white pixel density in the regions, using Euclidean distance measure for similarity computation. Preliminary experimental results show that the proposed method provides better retrieving result than retrieval using some of the existing methods.
Resumo:
Decision trees are very powerful tools for classification in data mining tasks that involves different types of attributes. When coming to handling numeric data sets, usually they are converted first to categorical types and then classified using information gain concepts. Information gain is a very popular and useful concept which tells you, whether any benefit occurs after splitting with a given attribute as far as information content is concerned. But this process is computationally intensive for large data sets. Also popular decision tree algorithms like ID3 cannot handle numeric data sets. This paper proposes statistical variance as an alternative to information gain as well as statistical mean to split attributes in completely numerical data sets. The new algorithm has been proved to be competent with respect to its information gain counterpart C4.5 and competent with many existing decision tree algorithms against the standard UCI benchmarking datasets using the ANOVA test in statistics. The specific advantages of this proposed new algorithm are that it avoids the computational overhead of information gain computation for large data sets with many attributes, as well as it avoids the conversion to categorical data from huge numeric data sets which also is a time consuming task. So as a summary, huge numeric datasets can be directly submitted to this algorithm without any attribute mappings or information gain computations. It also blends the two closely related fields statistics and data mining
Resumo:
This paper attempts to develop an improved tool, which would read two dimensional(2D) cardiac MRI images and compute areas and volume of the scar tissue. Here the computation would be done on the cardiac MR images to quantify the extent of damage inflicted by myocardial infarction on the cardiac muscle (myocardium) using Interpolation
Resumo:
This paper introduces a simple and efficient method and its implementation in an FPGA for reducing the odometric localization errors caused by over count readings of an optical encoder based odometric system in a mobile robot due to wheel-slippage and terrain irregularities. The detection and correction is based on redundant encoder measurements. The method suggested relies on the fact that the wheel slippage or terrain irregularities cause more count readings from the encoder than what corresponds to the actual distance travelled by the vehicle. The standard quadrature technique is used to obtain four counts in each encoder period. In this work a three-wheeled mobile robot vehicle with one driving-steering wheel and two-fixed rear wheels in-axis, fitted with incremental optical encoders is considered. The CORDIC algorithm has been used for the computation of sine and cosine terms in the update equations. The results presented demonstrate the effectiveness of the technique
Resumo:
This paper presents Reinforcement Learning (RL) approaches to Economic Dispatch problem. In this paper, formulation of Economic Dispatch as a multi stage decision making problem is carried out, then two variants of RL algorithms are presented. A third algorithm which takes into consideration the transmission losses is also explained. Efficiency and flexibility of the proposed algorithms are demonstrated through different representative systems: a three generator system with given generation cost table, IEEE 30 bus system with quadratic cost functions, 10 generator system having piecewise quadratic cost functions and a 20 generator system considering transmission losses. A comparison of the computation times of different algorithms is also carried out.
Resumo:
Short term load forecasting is one of the key inputs to optimize the management of power system. Almost 60-65% of revenue expenditure of a distribution company is against power purchase. Cost of power depends on source of power. Hence any optimization strategy involves optimization in scheduling power from various sources. As the scheduling involves many technical and commercial considerations and constraints, the efficiency in scheduling depends on the accuracy of load forecast. Load forecasting is a topic much visited in research world and a number of papers using different techniques are already presented. The accuracy of forecast for the purpose of merit order dispatch decisions depends on the extent of the permissible variation in generation limits. For a system with low load factor, the peak and the off peak trough are prominent and the forecast should be able to identify these points to more accuracy rather than minimizing the error in the energy content. In this paper an attempt is made to apply Artificial Neural Network (ANN) with supervised learning based approach to make short term load forecasting for a power system with comparatively low load factor. Such power systems are usual in tropical areas with concentrated rainy season for a considerable period of the year