998 resultados para Multicriteria optimization
Resumo:
Environmental problems, especially climate change, have become a serious global issue waiting for people to solve. In the construction industry, the concept of sustainable building is developing to reduce greenhouse gas emissions. In this study, a building information modeling (BIM) based building design optimization method is proposed to facilitate designers to optimize their designs and improve buildings’ sustainability. A revised particle swarm optimization (PSO) algorithm is applied to search for the trade-off between life cycle costs (LCC) and life cycle carbon emissions (LCCE) of building designs. In order tovalidate the effectiveness and efficiency of this method, a case study of an office building is conducted in Hong Kong. The result of the case study shows that this method can enlarge the searching space for optimal design solutions and shorten the processing time for optimal design results, which is really helpful for designers to deliver an economic and environmental friendly design scheme.
Resumo:
To evaluate the performance of the co-channel transmission based communication, we propose a new metric for area spectral efficiency (ASE) of interference limited ad-hoc network by assuming that the nodes are randomly distributed according to a Poisson point processes (PPP). We introduce a utility function, U = ASE/delay and derive the optimal ALOHA transmission probability p and the SIR threshold τ that jointly maximize the ASE and minimize the local delay. Finally, numerical results have been conducted to confirm that the joint optimization based on the U metric achieves a significant performance gain compared to conventional systems.
Resumo:
We investigate the cell coverage optimization problem for the massive multiple-input multiple-output (MIMO) uplink. By deploying tilt-adjustable antenna arrays at the base stations, cell coverage optimization can become a promising technique which is able to strike a compromise between covering cell-edge users and pilot contamination suppression. We formulate a detailed description of this optimization problem by maximizing the cell throughput, which is shown to be mainly determined by the user distribution within several key geometrical regions. Then, the formulated problem is applied to different example scenarios: for a network with hexagonal shaped cells and uniformly distributed users, we derive an analytical lower bound of the ergodic throughput in the objective cell, based on which, it is shown that the optimal choice for the cell coverage should ensure that the coverage of different cells does not overlap; for a more generic network with sectoral shaped cells and non-uniformly distributed users, we propose an analytical approximation of the ergodic throughput. After that, a practical coverage optimization algorithm is proposed, where the optimal solution can be easily obtained through a simple one-dimensional line searching within a confined searching region. Our numerical results show that the proposed coverage optimization method is able to greatly increase the system throughput in macrocells for the massive MIMO uplink transmission, compared with the traditional schemes where the cell coverage is fixed.
Resumo:
The worsening of process variations and the consequent increased spreads in circuit performance and consumed power hinder the satisfaction of the targeted budgets and lead to yield loss. Corner based design and adoption of design guardbands might limit the yield loss. However, in many cases such methods may not be able to capture the real effects which might be way better than the predicted ones leading to increasingly pessimistic designs. The situation is even more severe in memories which consist of substantially different individual building blocks, further complicating the accurate analysis of the impact of variations at the architecture level leaving many potential issues uncovered and opportunities unexploited. In this paper, we develop a framework for capturing non-trivial statistical interactions among all the components of a memory/cache. The developed tool is able to find the optimum memory/cache configuration under various constraints allowing the designers to make the right choices early in the design cycle and consequently improve performance, energy, and especially yield. Our, results indicate that the consideration of the architectural interactions between the memory components allow to relax the pessimistic access times that are predicted by existing techniques.
Resumo:
Good Laboratory Practice has been a part of non-clinical research for over 40 years. Optimization Research, despite having many papers discussing standards being published over the same period of time, has yet to embrace standards that underpin its research. In this paper we argue the need to adopt standards in optimization research. Building on previous papers, many of which have suggested that the optimization research community should adopt certain standards, we suggest a concrete set of recommendations that the community should adopt. We also discuss how the proposals in this paper could be progressed.
Resumo:
Rational catalyst design is one of the most fundamental goals in heterogeneous catalysis. Herein, we briefly review our previous design work, and then introduce a general optimization framework, which converts catalyst design into an optimization problem. Furthermore, an example is given using the gradient ascent method to show how this framework can be used for rational catalyst design. This framework may be applied to other design schemes.
Resumo:
We make a case for studying the impact of intra-node parallelism on the performance of data analytics. We identify four performance optimizations that are enabled by an increasing number of processing cores on a chip. We discuss the performance impact of these opimizations on two analytics operators and we identify how these optimizations affect each another.
Resumo:
The remarkable stability of microRNAs in biofluids underlies their potential as biomarkers, but their small size presents challenges for detection by RT-qPCR. The heterogeneity of microRNAs, with each one comprising a series of variants or 'isomiRs', adds additional complexity. Presented here are the key considerations for use of RT-qPCR to measure microRNAs and their isomiRs, with a focus on plasma. Modified nucleotides can be incorporated into primer sequences to enhance affinity and provide increased specificity and sensitivity for RT-qPCR assays. Approaches based upon polyA tailing and use of a common oligo(dT)-based reverse transcription oligonucleotide will detect most isomiRs. Conversely, stem-loop RT oligonucleotides and sequence specific probes can enable detection of specific isomiRs of interest. Next generation sequencing of all the products of a microRNA RT-PCR reaction is a promising new approach for both microRNA quantification and characterization.
Resumo:
In this brief, a hybrid filter algorithm is developed to deal with the state estimation (SE) problem for power systems by taking into account the impact from the phasor measurement units (PMUs). Our aim is to include PMU measurements when designing the dynamic state estimators for power systems with traditional measurements. Also, as data dropouts inevitably occur in the transmission channels of traditional measurements from the meters to the control center, the missing measurement phenomenon is also tackled in the state estimator design. In the framework of extended Kalman filter (EKF) algorithm, the PMU measurements are treated as inequality constraints on the states with the aid of the statistical criterion, and then the addressed SE problem becomes a constrained optimization one based on the probability-maximization method. The resulting constrained optimization problem is then solved using the particle swarm optimization algorithm together with the penalty function approach. The proposed algorithm is applied to estimate the states of the power systems with both traditional and PMU measurements in the presence of probabilistic data missing phenomenon. Extensive simulations are carried out on the IEEE 14-bus test system and it is shown that the proposed algorithm gives much improved estimation performances over the traditional EKF method.
Resumo:
Spectrum sensing is a key function of cognitive radio systems. Sensing performance is determined by three main factors including the wireless channel between the primary system and the cognitive radio nodes, the detection threshold, and the sensing time. In this letter a closed-form expression for the average probability of detection for energy detection based spectrum sensing over two-wave with diffuse power fading channels is derived. This expression is then used to optimize the detection threshold for cognitive radio nodes, which operate in confined structures that exhibit worse than Rayleigh fading conditions. Such fading conditions can represent a behavioral model of cognitive machine-to-machine systems deployed in enclosed structures such as in-vehicular environments.
Resumo:
The recent drive towards timely multiple product realizations has caused most Manufacturing Enterprises (MEs) to develop more flexible assembly lines supported by better manufacturing design and planning. The aim of this work is to develop a methodology which will support feasibility analyses of assembly tasks, in order to simulate either a manufacturing process or a single work-cell in which digital human models act. The methodology has been applied in a case study relating to a railway industry. Simulations were applied to help standardize the methodology and suggest new solutions for realizing ergonomic and efficient assembly processes in the railway industry.