927 resultados para Mouse lymphoma cells


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pierisin-1 is an 850-aa cytotoxic protein found in the cabbage butterfly, Pieris rapae, and has been suggested to consist of an N-terminal region with ADP-ribosyltransferase domain and of a C-terminal region that might have a receptor-binding domain. To elucidate the role of each region, we investigated the functions of various fragments of pierisin-1. In vitro expressed polypeptide consisting of amino acid residues 1–233 or 234–850 of pierisin-1 alone did not show cytotoxicity against human cervical carcinoma HeLa cells. However, the presence of both polypeptides in the culture medium showed some of the original cytotoxic activity. Introduction of the N-terminal polypeptide alone by electroporation also induced cell death in HeLa cells, and even in the mouse melanoma MEB4 cells insensitive to pierisin-1. Thus, the N-terminal region has a principal role in the cytotoxicity of pierisin-1 inside mammalian cells. Analyses of incorporated pierisin-1 indicated that the entire protein, regardless of whether it consisted of a single polypeptide or two separate N- and C-terminal polypeptides, was incorporated into HeLa cells. However, neither of the terminal polypeptides was incorporated when each polypeptide was present separately. These findings indicate that the C-terminal region is important for the incorporation of pierisin-1. Moreover, presence of receptor for pierisin-1 in the lipid fraction of cell membrane was suggested. The cytotoxic effects of pierisin-1 were enhanced by previous treatment with trypsin, producing “nicked” pierisin-1. Generation of the N-terminal fragment in HeLa cells was detected after application of intact entire molecule of pierisin-1. From the above observations, it is suggested that after incorporation of pierisin-1 into the cell by interaction of its C-terminal region with the receptor in the cell membrane, the entire protein is cleaved into the N- and C-terminal fragments with intracellular protease, and the N-terminal fragment then exhibits cytotoxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To determine the importance of mitochondrial reactive oxygen species toxicity in aging and senescence, we analyzed changes in mitochondrial function with age in mice with partial or complete deficiencies in the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD). Liver mitochondria from homozygous mutant mice, with a complete deficiency in MnSOD, exhibited substantial respiration inhibition and marked sensitization of the mitochondrial permeability transition pore. Mitochondria from heterozygous mice, with a partial deficiency in MnSOD, showed evidence of increased proton leak, inhibition of respiration, and early and rapid accumulation of mitochondrial oxidative damage. Furthermore, chronic oxidative stress in the heterozygous mice resulted in an increased sensitization of the mitochondrial permeability transition pore and the premature induction of apoptosis, which presumably eliminates the cells with damaged mitochondria. Mice with normal MnSOD levels show the same age-related mitochondrial decline as the heterozygotes but occurring later in life. The premature decline in mitochondrial function in the heterozygote was associated with the compensatory up-regulation of oxidative phosphorylation enzyme activity. Thus mitochondrial reactive oxygen species production, oxidative stress, functional decline, and the initiation of apoptosis appear to be central components of the aging process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aldosterone and vasopressin are responsible for the final adjustment of sodium and water reabsorption in the kidney. In principal cells of the kidney cortical collecting duct (CCD), the integral response to aldosterone and the long-term functional effects of vasopressin depend on transcription. In this study, we analyzed the transcriptome of a highly differentiated mouse clonal CCD principal cell line (mpkCCDcl4) and the changes in the transcriptome induced by aldosterone and vasopressin. Serial analysis of gene expression (SAGE) was performed on untreated cells and on cells treated with either aldosterone or vasopressin for 4 h. The transcriptomes in these three experimental conditions were determined by sequencing 169,721 transcript tags from the corresponding SAGE libraries. Limiting the analysis to tags that occurred twice or more in the data set, 14,654 different transcripts were identified, 3,642 of which do not match known mouse sequences. Statistical comparison (at P < 0.05 level) of the three SAGE libraries revealed 34 AITs (aldosterone-induced transcripts), 29 ARTs (aldosterone-repressed transcripts), 48 VITs (vasopressin-induced transcripts) and 11 VRTs (vasopressin-repressed transcripts). A selection of the differentially-expressed, hormone-specific transcripts (5 VITs, 2 AITs and 1 ART) has been validated in the mpkCCDcl4 cell line either by Northern blot hybridization or reverse transcription–PCR. The hepatocyte nuclear transcription factor HNF-3-α (VIT39), the receptor activity modifying protein RAMP3 (VIT48), and the glucocorticoid-induced leucine zipper protein (GILZ) (AIT28) are candidate proteins playing a role in physiological responses of this cell line to vasopressin and aldosterone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclin-dependent kinase (Cdk) 5 is a unique member of the Cdk family, because Cdk5 kinase activity is detected only in the nervous tissue. Two neuron-specific activating subunits of Cdk5, p35 and p39, have been identified. Overlapping expression pattern of these isoforms in the embryonic mouse brain and the significant residual Cdk5 kinase activity in brain homogenate of the p35−/− mice indicate the redundant functions of the Cdk5 activators in vivo. Severe neuronal migration defects in p35−/−Cdk5 +/− mice further support the idea that the redundant expression of the Cdk5 activators may cause a milder phenotype in p35−/− mice compared with Cdk5−/− mice. Mutant mice lacking either Cdk5 or p35 exhibit certain similarities with Reelin/Dab1-mutant mice in the disorganization of cortical laminar structure in the brain. To elucidate the relationship between Cdk5/p35 and Reelin/Dab1 signaling, we generated mouse lines that have combined defects of these genes. The addition of heterozygosity of either Dab1 or Reelin mutation to p35−/− causes the extensive migration defects of cortical neurons in the cerebellum. In the double-null mice of p35 and either Dab1 or Reelin, additional migration defects occur in the Purkinje cells in the cerebellum and in the pyramidal neurons in the hippocampus. These additional defects in neuronal migration in mice lacking both Cdk5/p35 and Reelin/Dab1 indicate that Cdk5/p35 may contribute synergistically to the positioning of the cortical neurons in the developing mouse brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Profilins are thought to play a central role in the regulation of de novo actin assembly by preventing spontaneous actin polymerization through the binding of actin monomers, and the adding of monomeric actin to the barbed actin-filament ends. Other cellular functions of profilin in membrane trafficking and lipid based signaling are also likely. Binding of profilins to signaling molecules such as Arp2/3 complex, Mena, VASP, N-WASP, dynamin I, and others, further implicates profilin and actin as regulators of diverse motile activities. In mouse, two profilins are expressed from two distinct genes. Profilin I is expressed at high levels in all tissues and throughout development, whereas profilin II is expressed in neuronal cells. To examine the function of profilin I in vivo, we generated a null profilin I (pfn1ko) allele in mice. Homozygous pfn1ko/ko mice are not viable. Pfn1ko/ko embryos died as early as the two-cell stage, and no pfn1ko/ko blastocysts were detectable. Adult pfn1ko/wt mice show a 50% reduction in profilin I expression with no apparent impairment of cell function. However, pfn1ko/wt embryos have reduced survival during embryogenesis compared with wild type. Although weakly expressed in early embryos, profilin II cannot compensate for lack of profilin I. Our results indicate that mouse profilin I is an essential protein that has dosage-dependent effects on cell division and survival during embryogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Etoposide, a topoisomerase II inhibitor widely used in cancer therapy, is suspected of inducing secondary tumors and affecting the genetic constitution of germ cells. A better understanding of the potential heritable risk of etoposide is needed to provide sound genetic counseling to cancer patients treated with this drug in their reproductive years. We used a mouse model to investigate the effects of clinical doses of etoposide on the induction of chromosomal abnormalities in spermatocytes and their transmission to zygotes by using a combination of chromosome painting and 4′,6-diamidino-2-phenylindole staining. High frequencies of chromosomal aberrations were detected in spermatocytes within 64 h after treatment when over 30% of the metaphases analyzed had structural aberrations (P < 0.01). Significant increases in the percentages of zygotic metaphases with structural aberrations were found only for matings that sampled treated pachytene (28-fold, P < 0.0001) and preleptotene spermatocytes (13-fold, P < 0.001). Etoposide induced mostly acentric fragments and deletions, types of aberrations expected to result in embryonic lethality, because they represent loss of genetic material. Chromosomal exchanges were rare. Etoposide treatment of pachytene cells induced aneuploidy in both spermatocytes (18-fold, P < 0.01) and zygotes (8-fold, P < 0.05). We know of no other report of an agent for which paternal exposure leads to an increased incidence of aneuploidy in the offspring. Thus, we found that therapeutic doses of etoposide affect primarily meiotic germ cells, producing unstable structural aberrations and aneuploidy, effects that are transmitted to the progeny. This finding suggests that individuals who undergo chemotherapy with etoposide may be at a higher risk for abnormal reproductive outcomes especially within the 2 months after chemotherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L-selectin mediates homing of lymphocytes to lymph nodes (LN). Transgenic mice that express rat insulin promoter regulated simian virus 40 Tag (RIP-Tag) develop large, local cancers that metastasize to liver but not LN. To test whether this lack of LN metastases reflects their absence from the circulation, transgenic mice were produced that express Tag (T), L-selectin (L), and Escherichia coli LacZ (Z), in pancreatic β cells. LTZ mice developed insulinomas that specifically had LN metastases; metastasis was blocked by an anti L-selectin mAb. LacZ+ tumor cells from these LN homed to secondary LN upon transfer. These results suggest that the highly vascularized islet carcinomas are shedding tumor cells into the bloodstream, which is a necessary but insufficient condition for metastasis to occur; L-selectin can facilitate homing of such tumor cells to LN, resulting in metastasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pendrin is an anion transporter encoded by the PDS/Pds gene. In humans, mutations in PDS cause the genetic disorder Pendred syndrome, which is associated with deafness and goiter. Previous studies have shown that this gene has a relatively restricted pattern of expression, with PDS/Pds mRNA detected only in the thyroid, inner ear, and kidney. The present study examined the distribution and function of pendrin in the mammalian kidney. Immunolocalization studies were performed using anti-pendrin polyclonal and monoclonal antibodies. Labeling was detected on the apical surface of a subpopulation of cells within the cortical collecting ducts (CCDs) that also express the H+-ATPase but not aquaporin-2, indicating that pendrin is present in intercalated cells of the CCD. Furthermore, pendrin was detected exclusively within the subpopulation of intercalated cells that express the H+-ATPase but not the anion exchanger 1 (AE1) and that are thought to mediate bicarbonate secretion. The same distribution of pendrin was observed in mouse, rat, and human kidney. However, pendrin was not detected in kidneys from a Pds-knockout mouse. Perfused CCD tubules isolated from alkali-loaded wild-type mice secreted bicarbonate, whereas tubules from alkali-loaded Pds-knockout mice failed to secrete bicarbonate. Together, these studies indicate that pendrin is an apical anion transporter in intercalated cells of CCDs and has an essential role in renal bicarbonate secretion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Doxycycline (Dox)-sensitive co-regulation of two transcriptionally coupled transgenes was investigated in the mouse. For this, we generated four independent mouse lines carrying coding regions for green fluorescent protein (GFP) and β-galactosidase in a bicistronic, bidirectional module. In all four lines the expression module was silent but was activated when transcription factor tTA was provided by the α-CaMKII-tTA transgene. In vivo analysis of GFP fluorescence, β-galactosidase and immunochemical stainings revealed differences in GFP and β-galactosidase levels between the lines, but comparable patterns of expression. Strong signals were found in neurons of the olfactory system, neocortical, limbic lobe and basal ganglia structures. Weaker expression was limited to thalamic, pontine and medullary structures, the spinal cord, the eye and to some Purkinje cells in the cerebellum. Strong GFP signals were always accompanied by intense β-galactosidase activity, both of which could be co-regulated by Dox. We conclude that the tTA-sensitive bidirectional expression module is well suited to express genes of interest in a regulated manner and that GFP can be used to track transcriptional activity of the module in the living mouse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During skeletal muscle differentiation, the Golgi complex (GC) undergoes a dramatic reorganization. We have now visualized the differentiation and fusion of living myoblasts of the mouse muscle cell line C2, permanently expressing a mannosidase-green fluorescent protein (GFP) construct. These experiments reveal that the reorganization of the GC is progressive (1–2 h) and is completed before the cells start fusing. Fluorescence recovery after photobleaching (FRAP), immunofluorescence, and immunogold electron microscopy demonstrate that the GC is fragmented into elements localized near the endoplasmic reticulum (ER) exit sites. FRAP analysis and the ER relocation of endogenous GC proteins by phospholipase A2 inhibitors demonstrate that Golgi-ER cycling of resident GC proteins takes place in both myoblasts and myotubes. All results support a model in which the GC reorganization in muscle reflects changes in the Golgi-ER cycling. The mechanism is similar to that leading to the dispersal of the GC caused, in all mammalian cells, by microtubule-disrupting drugs. We propose that the trigger for the dispersal results, in muscle, from combined changes in microtubule nucleation and ER exit site localization, which place the ER exit sites near microtubule minus ends. Thus, changes in GC organization that initially appear specific to muscle cells, in fact use pathways common to all mammalian cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ADAM 3 is a sperm surface glycoprotein that has been implicated in sperm-egg adhesion. Because little is known about the adhesive activity of ADAMs, we investigated the interaction of ADAM 3 disintegrin domains, made in bacteria and in insect cells, with murine eggs. Both recombinant proteins inhibited sperm-egg binding and fusion with potencies similar to that which we recently reported for the ADAM 2 disintegrin domain. Alanine scanning mutagenesis revealed a critical importance for the glutamine at position 7 of the disintegrin loop. Fluorescent beads coated with the ADAM 3 disintegrin domain bound to the egg surface. Bead binding was inhibited by an authentic, but not by a scrambled, peptide analog of the disintegrin loop. Bead binding was also inhibited by the function-blocking anti-α6 monoclonal antibody (mAb) GoH3, but not by a nonfunction blocking anti-α6 mAb, or by mAbs against either the αv or β3 integrin subunits. We also present evidence that in addition to the tetraspanin CD9, two other β1-integrin-associated proteins, the tetraspanin CD81 as well as the single pass transmembrane protein CD98 are expressed on murine eggs. Antibodies to CD9 and CD98 inhibited in vitro fertilization and binding of the ADAM 3 disintegrin domain. Our findings are discussed in terms of the involvement of multiple sperm ADAMs and multiple egg β1 integrin-associated proteins in sperm-egg binding and fusion. We propose that an egg surface “tetraspan web” facilitates fertilization and that it may do so by fostering ADAM–integrin interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antipyretic analgesics, taken in large doses over a prolonged period, cause a specific form of kidney disease, characterized by papillary necrosis and interstitial scarring. Epidemiological evidence incriminated mixtures of drugs including aspirin (ASA), phenacetin, and caffeine. The mechanism of toxicity is unclear. We tested the effects of ASA, acetaminophen (APAF, the active metabolite of phenacetin), caffeine, and other related drugs individually and in combination on mouse inner medullary collecting duct cells (mIMCD3). The number of rapidly proliferating cells was reduced by ≈50% by 0.5 mM ASA, salicylic acid, or APAF. The drugs had less effect on confluent cells, which proliferate slowly. Thus, the slow in vivo turnover of IMCD cells could explain why clinical toxicity requires very high doses of these drugs over a very long period. Caffeine greatly potentiated the effect of acetaminophen, pointing to a potential danger of the mixture. Cyclooxygenase (COX) inhibitors, indomethacin and NS-398, did not reduce cell number except at concentrations greatly in excess of those that inhibit COX. Therefore, COX inhibition alone is not toxic. APAF arrests most cells in late G1 and S and produces a mixed form of cell death with both oncosis (swollen cells and nuclei) and apoptosis. APAF is known to inhibit the synthesis of DNA and cause chromosomal aberrations due to inhibition of ribonucleotide reductase. Such effects of APAF might account for renal medullary cell death in vivo and development of uroepithelial tumors from surviving cells that have chromosomal aberrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteinase inhibitor I (Inh I) and proteinase inhibitor II (Inh II) from potato tubers are effective proteinase inhibitors of chymotrypsin and trypsin. Inh I and Inh II were shown to suppress irradiation-induced transformation in mouse embryo fibroblasts suggesting that they possess anticarcinogenic characteristics. We have previously demonstrated that Inh I and Inh II could effectively block UV irradiation-induced activation of transcription activator protein 1 (AP-1) in mouse JB6 epidermal cells, which mechanistically may explain their anticarcinogenic actions. In the present study, we investigated the effects of Inh I and Inh II on the expression and composition pattern of the AP-1 complex following stimulation by UV B (UVB) irradiation in the JB6 model. We found that Inh I and Inh II specifically inhibited UVB-induced AP-1, but not NFκB, activity in JB6 cells. Both Inh I and Inh II up-regulated AP-1 constituent proteins, JunD and Fra-2, and suppressed c-Jun and c-Fos expression and composition in bound AP-1 in response to UVB stimulation. This regulation of the AP-1 protein compositional pattern in response to Inh I or Inh II may be critical for the inhibition of UVB-induced AP-1 activity by these agents found in potatoes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Little is known about stem cell biology or the specialized environments or niches believed to control stem cell renewal and differentiation in self-renewing tissues of the body. Functional assays for stem cells are available only for hematopoiesis and spermatogenesis, and the microenvironment, or niche, for hematopoiesis is relatively inaccessible, making it difficult to analyze donor stem cell colonization events in recipients. In contrast, the recently developed spermatogonial stem cell assay system allows quantitation of individual colonization events, facilitating studies of stem cells and their associated microenvironment. By using this assay system, we found a 39-fold increase in male germ-line stem cells during development from birth to adult in the mouse. However, colony size or area of spermatogenesis generated by neonate and adult stem cells, 2–3 months after transplantation into adult tubules, was similar (∼0.5 mm2). In contrast, the microenvironment in the immature pup testis was 9.4 times better than adult testis in allowing colonization events, and the area colonized per donor stem cell, whether from adult or pup, was about 4.0 times larger in recipient pups than adults. These factors facilitated the restoration of fertility by donor stem cells transplanted to infertile pups. Thus, our results demonstrate that stem cells and their niches undergo dramatic changes in the postnatal testis, and the microenvironment of the pup testis provides a more hospitable environment for transplantation of male germ-line stem cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CD8+ T cell diaspora has been analyzed after secondary challenge with an influenza A virus that replicates only in the respiratory tract. Numbers of DbNP366- and DbPA224-specific CD8+ T cells were measured by tetramer staining at the end of the recall response, then followed sequentially in the lung, lymph nodes, spleen, blood, and other organs. The extent of clonal expansion did not reflect the sizes of the preexisting memory T cell pools. Although the high-frequency CD8+ tetramer+ populations in the pneumonic lung and mediastinal lymph nodes fell rapidly from peak values, the “whole mouse” virus-specific CD8+ T cell counts decreased only 2-fold over the 4 weeks after infection, then subsided at a fairly steady rate to reach a plateau at about 2 months. The largest numbers were found throughout in the spleen, then the bone marrow. The CD8+DbNP366+ and CD8+DbPA224+ sets remained significantly enlarged for at least 4 months, declining at equivalent rates while retaining the nucleoprotein > acid polymerase immunodominance hierarchy characteristic of the earlier antigen-driven phase. Lowest levels of the CD69 “activation marker” were detected consistently on virus-specific CD8+ T cells in the blood, then the spleen. Those in the bone marrow and liver were intermediate, and CD69hi T cells were very prominent in the regional lymph nodes and the nasal-associated lymphoid tissue. Any population of “resting” CD8+ memory T cells is thus phenotypically heterogeneous, widely dispersed, and subject to broad homeostatic and local environmental effects irrespective of epitope specificity or magnitude.