996 resultados para Moorland hydrology
Resumo:
A life cycle of the Madden–Julian oscillation (MJO) was constructed, based on 21 years of outgoing long-wave radiation data. Regression maps of NCEP–NCAR reanalysis data for the northern winter show statistically significant upper-tropospheric equatorial wave patterns linked to the tropical convection anomalies, and extratropical wave patterns over the North Pacific, North America, the Atlantic, the Southern Ocean and South America. To assess the cause of the circulation anomalies, a global primitive-equation model was initialized with the observed three-dimensional (3D) winter climatological mean flow and forced with a time-dependent heat source derived from the observed MJO anomalies. A model MJO cycle was constructed from the global response to the heating, and both the tropical and extratropical circulation anomalies generally matched the observations well. The equatorial wave patterns are established in a few days, while it takes approximately two weeks for the extratropical patterns to appear. The model response is robust and insensitive to realistic changes in damping and basic state. The model tropical anomalies are consistent with a forced equatorial Rossby–Kelvin wave response to the tropical MJO heating, although it is shifted westward by approximately 20° longitude relative to observations. This may be due to a lack of damping processes (cumulus friction) in the regions of convective heating. Once this shift is accounted for, the extratropical response is consistent with theories of Rossby wave forcing and dispersion on the climatological flow, and the pattern correlation between the observed and modelled extratropical flow is up to 0.85. The observed tropical and extratropical wave patterns account for a significant fraction of the intraseasonal circulation variance, and this reproducibility as a response to tropical MJO convection has implications for global medium-range weather prediction. Copyright © 2004 Royal Meteorological Society
Resumo:
Data from the MIPAS instrument on Envisat, supplemented by meteorological analyses from ECMWF and the Met Office, are used to study the meteorological and trace-gas evolution of the stratosphere in the southern hemisphere during winter and spring 2003. A pole-centred approach is used to interpret the data in the physically meaningful context of the evolving stratospheric polar vortex. The following salient dynamical and transport features are documented and analysed: the merger of anticyclones in the stratosphere; the development of an intense, quasi-stationary anticyclone in spring; the associated top-down breakdown of the polar vortex; the systematic descent of air into the polar vortex; and the formation of a three-dimensional structure of a tracer filament on a planetary scale. The paper confirms and extends existing paradigms of the southern hemisphere vortex evolution. The quality of the MIPAS observations is seen to be generally good. though the water vapour retrievals are unrealistic above 10 hPa in the high-latitude winter.
Resumo:
The central role of the atmosphere in abrupt climate change is proposed and discussed. This discussion is given in the context of the poleward transport of energy in the climate system and of climate variability and change. A number of examples based on observational and model data are used to illustrate the ideas.
Resumo:
Observations show the oceans have warmed over the past 40 yr. with appreciable regional variation and more warming at the surface than at depth. Comparing the observations with results from two coupled ocean-atmosphere climate models [the Parallel Climate Model version 1 (PCM) and the Hadley Centre Coupled Climate Model version 3 (HadCM3)] that include anthropogenic forcing shows remarkable agreement between the observed and model-estimated warming. In this comparison the models were sampled at the same locations as gridded yearly observed data. In the top 100 m of the water column the warming is well separated from natural variability, including both variability arising from internal instabilities of the coupled ocean-atmosphere climate system and that arising from volcanism and solar fluctuations. Between 125 and 200 m the agreement is not significant, but then increases again below this level, and remains significant down to 600 m. Analysis of PCM's heat budget indicates that the warming is driven by an increase in net surface heat flux that reaches 0.7 W m(-2) by the 1990s; the downward longwave flux increases bv 3.7 W m(-2). which is not fully compensated by an increase in the upward longwave flux of 2.2 W m(-2). Latent and net solar heat fluxes each decrease by about 0.6 W m(-2). The changes in the individual longwave components are distinguishable from the preindustrial mean by the 1920s, but due to cancellation of components. changes in the net surface heat flux do not become well separated from zero until the 1960s. Changes in advection can also play an important role in local ocean warming due to anthropogenic forcing, depending, on the location. The observed sampling of ocean temperature is highly variable in space and time. but sufficient to detect the anthropogenic warming signal in all basins, at least in the surface layers, bv the 1980s.
Resumo:
In this study, the mechanisms leading to the El Nino peak and demise are explored through a coupled general circulation model ensemble approach evaluated against observations. The results here suggest that the timing of the peak and demise for intense El Nino events is highly predictable as the evolution of the coupled system is strongly driven by a southward shift of the intense equatorial Pacific westerly anomalies during boreal winter. In fact, this systematic late-year shift drives an intense eastern Pacific thermocline shallowing, constraining a rapid El Nino demise in the following months. This wind shift results from a southward displacement in winter of the central Pacific warmest SSTs in response to the seasonal evolution of solar insolation. In contrast, the intensity of this seasonal feedback mechanism and its impact on the coupled system are significantly weaker in moderate El Nino events, resulting in a less pronounced thermocline shallowing. This shallowing transfers the coupled system into an unstable state in spring but is not sufficient to systematically constrain the equatorial Pacific evolution toward a rapid El Nino termination. However, for some moderate events, the occurrence of intense easterly wind anomalies in the eastern Pacific during that period initiate a rapid surge of cold SSTs leading to La Nina conditions. In other cases, weaker trade winds combined with a slightly deeper thermocline allow the coupled system to maintain a broad warm phase evolving through the entire spring and summer and a delayed El Nino demise, an evolution that is similar to the prolonged 1986/87 El Nino event. La Nina events also show a similar tendency to peak in boreal winter, with characteristics and mechanisms mainly symmetric to those described for moderate El Nino cases.
Resumo:
There is much evidence that El Niño and La Niña lead to significant atmospheric seasonal predictability across much of the globe. However, despite successful predictions of tropical Pacific SSTs, atmospheric seasonal forecasts have had limited success. This study investigates model errors in the Hadley Centre Atmospheric Model version 3 (HadAM3) by analyzing composites of similar El Niño and La Niña events at their peak in December–January–February (DJF) and through their decay in March–April–May (MAM). The large-scale, tropical ENSO teleconnections are modeled accurately by HadAM3 during DJF but the strongest extratropical teleconnection, that in the North Pacific during winter, is modeled inaccurately. The Aleutian low is frequently observed to shift eastward during El Niño but the modeled response always consists of a deepening of the low without a shift. This is traced to small errors in the sensitivity of precipitation to SST in the tropical Pacific, which does not display enough variability so that the precipitation is always too high over the warmest SSTs. This error is reduced when vertical resolution is increased from 19 to 30 levels but enhanced horizontal resolution does not improve the simulation further. In MAM, following the peak of an El Niño or La Niña, atmospheric anomalies are observed to decay rapidly. The modeled ENSO response in DJF persists into MAM, making the extratropical anomalies in MAM too strong. This inaccuracy is again likely to be due to the high modeled sensitivity of tropical Pacific precipitation to SST, which is not significantly improved with enhanced vertical or horizontal resolution in MAM.