949 resultados para Molecular evolution


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crotalus durissus rattlesnakes are responsible for the most lethal cases of snakebites in Brazil. Crotalus durissus collilineatus subspecies is related to a great number of accidents in Southeast and Central West regions, but few studies on its venom composition have been carried out to date. In an attempt to describe the transcriptional profile of the C. durissus collilineatus venom gland, we generated a cDNA library and the sequences obtained could be identified by similarity searches on existing databases. Out of 673 expressed sequence tags (ESTs) 489 produced readable sequences comprising 201 singletons and 47 clusters of two or more ESTs. One hundred and fifty reads (60.5%) produced significant hits to known sequences. The results showed a predominance of toxin-coding ESTs instead of transcripts coding for proteins involved in all cellular functions. The most frequent toxin was crotoxin, comprising 88% of toxin-coding sequences. Crotoxin B, a basic phospholipase A(2) (PLA(2)) subunit of crotoxin, was represented in more variable forms comparing to the non-enzymatic subunit (crotoxin A), and most sequences coding this molecule were identified as CB1 isoform from Crotalus durissus terrificus venom. Four percent of toxin-related sequences in this study were identified as growth factors, comprising five sequences for vascular endothelial growth factor (VEGF) and one for nerve growth factor (NGF) that showed 100% of identity with C. durissus terrificus NGF. We also identified two clusters for metalloprotease from PII class comprising 3% of the toxins, and two for serine proteases, including gyroxin (2.5%). The remaining 2.5% of toxin-coding ESTs represent singletons identified as homologue sequences to cardiotoxin, convulxin, angiotensin-converting enzyme inhibitor and C-type natriuretic peptide, Ohanin, crotamin and PLA(2) inhibitor. These results allowed the identification of the most common classes of toxins in C. durissus collilineatus snake venom, also showing some unknown classes for this subspecies and even for C. durissus species, such as cardiotoxins and VEGF. (C) 2009 Published by Elsevier Masson SAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phospholipases A(2) (PLA(2)s) are important components of Bothrops snake venoms, that can induce several effects on envenomations such as myotoxicity, inhibition or induction of platelet aggregation and edema. It is known that venomous and non-venomous snakes present PLA(2) inhibitory proteins (PLIs) in their blood plasma. An inhibitory protein that neutralizes the enzymatic and toxic activities of several PLA2s from Bothrops venoms was isolated from Bothrops alternatus snake plasma by affinity chromatography using the immobilized myotoxin BthTX-I on CNBr-activated Sepharose. Biochemical characterization of this inhibitory protein, denominated alpha BaltMIP, showed it to be a glycoprotein with Mr of similar to 24,000 for the monomeric subunit. CD spectra of the PLA(2)/inhibitor complexes are considerably different from those corresponding to the individual proteins and data deconvolution suggests that the complexes had a relative gain of helical structure elements in comparison to the individual protomers, which may indicate a more compact structure upon complexation. Theoretical and experimental structural studies performed in order to obtain insights into the structural features of aBaltMIP indicated that this molecule may potentially trimerize in solution, thus strengthening the hypothesis previously raised by other authors about snake PLIs oligomerization. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monoamine oxidase is a flavoenzyme bound to the mitochondrial outer membranes of the cells, which is responsible for the oxidative deamination of neurotransmitter and dietary amines. It has two distinct isozymic forms, designated MAO-A and MAO-B, each displaying different substrate and inhibitor specificities. They are the well-known targets for antidepressant, Parkinson`s disease, and neuroprotective drugs. Elucidation of the x-ray crystallographic structure of MAO-B has opened the way for the molecular modeling studies. In this work we have used molecular modeling, density functional theory with correlation, virtual screening, flexible docking, molecular dynamics, ADMET predictions, and molecular interaction field studies in order to design new molecules with potential higher selectivity and enzymatic inhibitory activity over MAO-B.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient separation of fuel gas (H2) from other gases in reformed gas mixtures is becoming increasingly important in the development of alternative energy systems. A highly efficient and new technology available for these separations is molecular sieve silica (MSS) membranes derived from tetraethyl-orthosilicate (TEOS). A permeation model is developed from an analogous electronic system and compared to transport theory to determine permeation, selectivity and apparent activation of energy based on experimental values. Experimental results for high quality membranes show single gas permselectivity peaking at 57 for H2/CO at 150°C with a H2 permeation of 5.14 x 10^-8 mol.m^-2.s^-1.Pa^-1. Higher permeance was also achieved, but at the expense of selectivity. This is the case for low quality membranes with peak H2 permeation at 1.78 x 10-7 mol.m-2.s-1.Pa-1 at 22°C and H2/CO permselectivity of 4.5. High quality membranes are characterised with positive apparent activation energy while the low quality membranes have negative values. The model had a good fit of r-squared of 0.99-1.00 using the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weakly branched silica films formed by the two-step sol-gel process allow for the formation of high selectivity membranes for gas separation. 29Si NMR and gas permeation showed that reduced crosslinking leads to He/CH4 selectivity improvement from 300 to 1000. Applied in membrane reactor for cyclohexane conversion to benzene, conversions were achieved at 14 fold higher than a conventional reactor at 250°C. Hydrothermal stability studies showed that carbon templating of silica is required for hydrothermally stable membranes. From our work it was shown that with correct application of chemistry, practical membrane systems can be built to suit gas separation (e. g. hydrogen fuel) and reactor systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we compare the hydrothermal stability performance of a Templated Molecular Sieve Silica (TMSS) membrane against a standard, non-templated Molecular Sieve Silica (MSS) membrane. The tests were carried under dry and wet (steam) conditions for single gas (He, H2, CO and CO2) at 1-2 atm membrane pressure drop at 200oC. Single gas TMSS membrane H2, permeance and H2/CO permselectivity was found to be 2.05 x 10-8 mols.m-2.s-1.Pa-1 and 15, respectively. The MSS membrane showed similar selectivity, but increased overall flux. He permeance through membranes decayed at a rate of 4-5 x 10-10 mols.m-2.s-1.Pa-1 per day regardless of membrane ambience (dry or wet). Although H2/CO permselectivity of the TMSS membrane slightly improved from 15 to 18 after steam testing, the MSS membrane resulted in significant reduction from 16 to 8.3. In addition, membrane regeneration after more than 50 days resulted in the TMSS membrane reverting to its original permeation levels while no significant improvements were observed for the MSS membra ne. Results showed that the TMSS membrane had enhanced hydrothermal stability and regeneration ability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For fuel cell CO clean up application, the presence of water with silica membranes greatly reduces their selectivity to CO. We show results of a new functional carbonised template membrane of around 13nm thickness which offered hydrothermal stability with no compromise to the membrane’s H2/CO permselectivity of 16. Lost permeance was also regenerated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSS membranes are a good candidate for CO cleanup in fuel cell fuel processing systems due to their ability to selectively permeate H2 over CO via molecular sieving. Successfully scaled up tubular membranes were stable under dry conditions to 400°C with H2 permeance as high as 2 x 10-6 mol.m-2.s^-1.Pa^-1 at 200 degrees C and H2/CO selectivity up to 6.4, indicating molecular sieving was the dominant mechanism. A novel carbonised template molecular sieve silica (CTMSS) technology gave the scaled up membranes resilience in hydrothermal conditions up to 400 degrees C in 34% steam and synthetic reformate, which is required for use in fuel cell CO cleanup systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classical model of surface layering followed by capillary condensation during adsorption in mesopores, is modified here by consideration of the adsorbate solid interaction potential. The new theory accurately predicts the capillary coexistence curve as well as pore criticality, matching that predicted by density functional theory. The model also satisfactorily predicts the isotherm for nitrogen adsorption at 77.4 K on MCM-41 material of various pore sizes, synthesized and characterized in our laboratory, including the multilayer region, using only data on the variation of condensation pressures with pore diameter. The results indicate a minimum mesopore diameter for the surface layering model to hold as 14.1 Å, below which size micropore filling must occur, and a minimum pore diameter for mechanical stability of the hemispherical meniscus during desorption as 34.2 Å. For pores in-between these two sizes reversible condensation is predicted to occur, in accord with the experimental data for nitrogen adsorption on MCM-41 at 77.4 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

40Ar/39Ar laser incremental heating analyses of individual grains of supergene jarosite, alunite, and cryptomelane from weathering profiles in the Dugald River area, Queensland, Australia, show a strong positive correlation between a sample’s age and its elevation. We analyzed 125 grains extracted from 35 hand specimens collected from weathering profiles at 11 sites located at 3 distinct elevations. The highest elevation profile hosts the oldest supergene minerals, whereas progressively younger samples occur at lower positions in the landscape. The highest elevation sampling sites (three sites), located on top of an elongated mesa (255 to 275 m elevation), yield ages in the 16 to 12 Ma range. Samples from an intermediate elevation site (225 to 230 m elevation) yield ages in the 6 to 4 Ma range. Samples collected at the lowest elevation sites (200 to 220 m elevation) yield ages in the 2.2 to 0.8 Ma interval. Grains of supergene alunite, jarosite, and cryptomelane analyzed from individual single hand specimens yield reproducible results, confirming the suitability of these minerals to 40Ar/39Ar geochronology. Multiple samples collected from the same site also yield reproducible results, indicating that the ages measured are true precipitation ages for the samples analyzed. Different sites, up to 3 km apart, sampled from weathering profiles at the same elevation again yield reproducible results. The consistency of results confirms that 40Ar/39Ar geochronology of supergene jarosite, alunite, and cryptomelane yields ages of formation of weathering profiles, providing a reliable numerical basis for differentiating and correlating these profiles. The age versus elevation relationship obtained suggest that the stepped landscapes in the Dugald River area record a progressive downward migration of a relatively flat weathering front. The steps in the landscape result from differential erosion of previously weathered bedrock displaying different susceptibility to weathering and contrasting resistance to erosion. Combined, the age versus elevation relationships measured yield a weathering rate of 3.8 m. Myr−1 (for the past 15 Ma) if a descending subhorizontal weathering front is assumed. The results also permit the calculation of the erosion rate of the more easily weathered and eroded lithologies, assuming an initially flat landscape as proposed in models of episodic landscape development. The average erosion rate for the past 15 Ma is 3.3 m. Myr−1, consistent with erosion rates obtained by cosmogenic isotope studies in the region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Few marine hybrid zones have been studied extensively, the major exception being the hybrid zone between the mussels Mytilus edulis and M. galloprovincialis in southwestern Europe. Here, we focus on two less studied hybrid zones that also involve Mytilus spp.; M. edulis and M. trossulus are sympatric and hybridize on both western and eastern coasts of the Atlantic Ocean. We review the dynamics of hybridization in these two hybrid zones and evaluate the role of local adaptation for maintaining species boundaries. In Scandinavia, hybridization and gene introgression is so extensive that no individuals with pure M. trossulus genotypes have been found. However, M. trossulus alleles are maintained at high frequencies in the extremely low salinity Baltic Sea for some allozyme genes. A synthesis of reciprocal transplantation experiments between different salinity regimes shows that unlinked Gpi and Pgm alleles change frequency following transplantation, such that post-transplantation allelic composition resembles native populations found in the same salinity. These experiments provide strong evidence for salinity adaptation at Gpi and Pgm (or genes linked to them). In the Canadian Maritimes, pure M. edulis and M. trossulus individuals are abundant, and limited data suggest that M. edulis predominates in low salinity and sheltered conditions, whereas M. trossulus are more abundant on the wave-exposed open coasts. We suggest that these conflicting patterns of species segregation are, in part, caused by local adaptation of Scandinavian M. trossulus to the extremely low salinity Baltic Sea environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simplified model for anisotropic mantle convection based on a novel class of rheologies, originally developed for folding instabilities in multilayered rock (MUHLHAUS et al., 2002), is extended ¨ through the introduction of a thermal anisotropy dependent on the local layering. To examine the effect of the thermal anisotropy on the evolution of mantle material, a parallel implementation of this model was undertaken using the Escript modelling toolkit and the Finley finite-element computational kernel (DAVIES et al., 2004). For the cases studied, there appears too little if any effect. For comparative purposes, the effects of anisotropic shear viscosity and the introduced thermal anisotropy are also presented. These results contribute to the characterization of viscous anisotropic mantle convection subject to variation in thermal conductivities and shear viscosities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quasar (QSO) absorption spectra provide an extremely useful probe of possible cosmological variation in various physical constants. Comparison of H i 21-cm absorption with corresponding molecular (rotational) absorption spectra allows us to constrain variation in , where α is the fine-structure constant and gp is the proton g-factor. We analyse spectra of two QSOs, PKS 1413+135 and TXS 0218+357, and derive values of at absorption redshifts of and 0.6847 by simultaneous fitting of the H i 21-cm and molecular lines. We find and respectively, indicating an insignificantly smaller y in the past. We compare our results with other constraints from the same two QSOs given recently by Drinkwater et al. and Carilli et al., and with our recent optical constraints, which indicated a smaller α at higher redshifts.