978 resultados para Molecular approach
Resumo:
We use a quantum master equation to describe transport in double-dot devices. The coherent dot-to-dot coupling affects the noise spectra strongly. For phonon-assisted tunneling, the calculated current spectra are consistent with those of experiments. The model shows that quantum stochastic theory may he applied to some advantage in mesoscopic electronic systems. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Using the coupled-system approach we calculate the optical spectra of the fluorescence and transmitted fields of a two-level atom driven by a squeezed vacuum of bandwidths smaller than the natural atomic linewidth. We find that in this regime of squeezing bandwidths the spectra exhibit unique features, such as a hole burning and a three-peak structure, which do not appear for a broadband excitation. We show that the features are unique to the quantum nature of the driving squeezed vacuum field and donor appear when the atom is driven by a classically squeezed field. We find that a quantum squeezed-vacuum field produces squeezing in the emitted fluorescence field which appears only in the squeezing spectrum while there is no squeezing in the total field. We also discuss a nonresonant excitation and find that depending on the squeezing bandwidth there is a peak or a hole in the spectrum at a frequency corresponding to a three-wave-mixing process. The hole appears only for a broadband excitation and results from the strong correlations between squeezed-vacuum photons.
Resumo:
This paper describes a hybrid numerical method of an inverse approach to the design of compact magnetic resonance imaging magnets. The problem is formulated as a field synthesis and the desired current density on the surface of a cylinder is first calculated by solving a Fredholm equation of the first, kind. Nonlinear optimization methods are then invoked to fit practical magnet coils to the desired current density. The field calculations are performed using a semi-analytical method. The emphasis of this work is on the optimal design of short MRI magnets. Details of the hybrid numerical model are presented, and the model is used to investigate compact, symmetric MRI magnets as well as asymmetric magnets. The results highlight that the method can be used to obtain a compact MRI magnet structure and a very homogeneous magnetic field over the central imaging volume in clinical systems of approximately 1 m in length, significantly shorter than current designs. Viable asymmetric magnet designs, in which the edge of the homogeneous region is very close to one end of the magnet system are also presented. Unshielded designs are the focus of this work. This method is flexible and may be applied to magnets of other geometries. (C) 2000 American Association of Physicists in Medicine. [S0094-2405(00)00303-5].
Resumo:
The temperature dependence of the transport properties of the metallic phase of a frustrated Hubbard model on the hypercubic lattice at half-filling is calculated. Dynamical mean-held theory, which maps the Hubbard model onto a single impurity,Anderson model that is solved self-consistently, and becomes exact in the limit of large dimensionality, is used. As the temperature increases there is a smooth crossover from coherent Fermi liquid excitations at low temperatures to incoherent excitations at high temperatures. This crossover leads to a nonmonotonic temperature dependence for the resistance, thermopower, and Hall coefficient, unlike in conventional metals. The resistance smoothly increases from a quadratic temperature dependence at low temperatures to large values which can exceed the Mott-Ioffe-Regel value ha/e(2) (where a is a lattice constant) associated with mean free paths less than a lattice constant. Further signatures of the thermal destruction of quasiparticle excitations are a peak in the thermopower and the absence of a Drude peak in the optical conductivity. The results presented here are relevant to a wide range of strongly correlated metals, including transition metal oxides, strontium ruthenates, and organic metals.
Resumo:
Over recent years databases have become an extremely important resource for biomedical research. Immunology research is increasingly dependent on access to extensive biological databases to extract existing information, plan experiments, and analyse experimental results. This review describes 15 immunological databases that have appeared over the last 30 years. In addition, important issues regarding database design and the potential for misuse of information contained within these databases are discussed. Access pointers are provided for the major immunological databases and also for a number of other immunological resources accessible over the World Wide Web (WWW). (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Direct oxidation of sulfite to sulfate occurs in various photo- and chemotrophic sulfur oxidizing microorganisms as the final step in the oxidation of reduced sulfur compounds and is catalyzed by sulfite:cytochrome c oxidoreductase (EC 1.8.2.1), Here we show that the enzyme from Thiobacillus novellus is a periplasmically located alpha beta heterodimer, consisting of a 40.6-kDa subunit containing a molybdenum cofactor and an 8.8-kDa monoheme cytochrome c(552) smbunit (midpoint redox potential, Em(8.0) = +280 mV), The organic component of the molybdenum cofactor was identified as molybdopterin contained in a 1:1 ratio to the Mo content of the enzyme. Electron paramagnetic resonance spectroscopy revealed the presence of a sulfite-inducible Mo(V) signal characteristic of sulfite:acceptor oxidoreductases. However, pH-dependent changes in the electron paramagnetic resonance signal were not detected. Kinetic studies showed that the enzyme exhibits a ping-pong mechanism involving two reactive sites. K-m values for sulfite and cytochrome c(550) were determined to be 27 and 4 mu M, respectively; the enzyme was found to be reversibly inhibited by sulfate and various buffer ions. The sorAB genes, which encode the enzyme, appear to form an operon, which is preceded by a putative extracytoplasmic function-type promoter and contains a hairpin loop termination structure downstream of sorB. While SorA exhibits significant similarities to known sequences of eukaryotic and bacterial sulfite:acceptor oxidoreductases, SorB does not appear to be closely related to any known c-type cytochromes.
Resumo:
A conformationally biased decapeptide agonist of human C5a anaphylatoxin (YSPKPMPLaR) was used as a molecular adjuvant in stimulating an Ag-specific CTL response against murine P815S target cells expressing an Ld-restricted CTL epitope of the hepatitis B surface Ag (HBsAg), Groups of BALB/c mice (H-2(d)) were immunized with aqueous solutions of the HBsAg CTL epitopes (IPQSLDSWWTSL and IPQSLDSTaVTSLRR); the C5a agonist (YSFKPMPLaR); the C5a agonist and HBsAg CTL epitopes admired (IPQSLDSWWTSL and IPQSLDSWWTSLRR + YSFKPMPLaR); the C5a-active, HBsAg CTL epitope-C5a agonist constructs (IPQSLDSWWTSLYSFKPMPLaR, IPQSLDSWWTSLRRYSFKPMPLaR, and IPQSLDSWWTSLRVRRYSFPMPLaR); a C5a-inactive, reverse-moiety construct (YSFKPMPLaRRRIPQSLDSWWTSL); and a C5a-attenuated, carboxyl-terminal-blocked construct (IPQSLDSWWTSLRRYSFKPMPLaRG). Ag-specific CD8(+) CTL responses were observed after the secondary boost in the absence of any added adjuvant only in mice that were immunized with C5a-active contructs, IPQSLDSWWTSLRRYSFKPMPLaR and IPQSLDSWWTSLRVRRYSFKPMPLaR. These two C5a-active immunogens contained potential subtilisin-sensitive linker sequences between the HBsAg CTL epitope and the C5a agonist; i.e., a double-Arg (RR) and a furin protease sensitive sequence (RVRR), The introduction of these potentially cleavable sequences may be a method of increasing the likelihood of liberating the CTL epitope from the C5a agonist by intracellular proteases, thereby facilitating entry of the epitope into Ag-processing pathways via an exogenous route.
Resumo:
We consider the quantum theory of three fields interacting via parametric and repulsive quartic couplings. This can be applied to treat photonic chi((2)) and chi((3)) interactions, and interactions in atomic Bose-Einstein condensates or quantum Fermi gases, describing coherent molecule formation together with a-wave scattering. The simplest two-particle quantum solitons or bound-state solutions of the idealized Hamiltonian, without a momentum cutoff, are obtained exactly. They have a pointlike structure in two and three dimensions-even though the corresponding classical theory is nonsingular. We show that the solutions can be regularized with a momentum cutoff. The parametric quantum solitons have much more realistic length scales and binding energies than chi((3)) quantum solitons, and the resulting effects could potentially be experimentally tested in highly nonlinear optical parametric media or interacting matter-wave systems. N-particle quantum solitons and the ground state energy are analyzed using a variational approach. Applications to atomic/molecular Bose-Einstein condensates (BEC's) are given, where we predict the possibility of forming coupled BEC solitons in three space dimensions, and analyze superchemistry dynamics.
Resumo:
In this and a preceding paper, we provide an introduction to the Fujitsu VPP range of vector-parallel supercomputers and to some of the computational chemistry software available for the VPP. Here, we consider the implementation and performance of seven popular chemistry application packages. The codes discussed range from classical molecular dynamics to semiempirical and ab initio quantum chemistry. All have evolved from sequential codes, and have typically been parallelised using a replicated data approach. As such they are well suited to the large-memory/fast-processor architecture of the VPP. For one code, CASTEP, a distributed-memory data-driven parallelisation scheme is presented. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
It has been observed experimentally [H.R. Xia, C.Y. Ye, and S.Y. Zhu, Phys. Rev. Lett. 77, 1032 (1996)] that quantum interference between two molecular transitions can lead to a suppression or enhancement of spontaneous emission. This is manifest in the fluorescent intensity as a function of the detuning of the driving field from the two-photon resonance condition. Here we present a theory that explains the observed variation of the number of peaks with the mutual polarization of the molecular transition dipole moments. Using master equation techniques we calculate analytically as well as numerically the steady-state fluorescence, and find that the number of peaks depends on the excitation process. If the molecule is driven to the upper levels by a two-photon process, the fluorescent intensity consists of two peaks regardless of the mutual polarization of the transition dipole moments. Lf the excitation process is composed of both a two-step, one-photon process and a one-step, two-photon process, then there are two peaks on transitions with parallel dipole moments and three peaks on transitions with antiparallel dipole moments. This latter case is in excellent agreement with the experiment.
Resumo:
In this paper, a new v-metric based approach is proposed to design decentralized controllers for multi-unit nonlinear plants that admit a set of plant decompositions in an operating space. Similar to the gap metric approach in literature, it is shown that the operating space can also be divided into several subregions based on a v-metric indicator, and each of the subregions admits the same controller structure. A comparative case study is presented to display the advantages of proposed approach over the gap metric approach. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The present paper proposes an approach to obtaining the activation energy distribution for chemisorption of oxygen onto carbon surfaces, while simultaneously allowing for the activation energy dependence of the pre-exponential factor of the rate constant. Prior studies in this area have considered this factor to be uniform, thereby biasing estimated distributions. The results show that the derived activation energy distribution is not sensitive to the chemisorption mechanism because of the step function like property of the coverage. The activation energy distribution is essentially uniform for some carbons, and has two or possibly more discrete stages, suggestive of at least two types of sites, each with its own uniform distribution. The pre-exponential factors of the reactions are determined directly from the experimental data, and are found not to be constant as assumed in earlier work, but correlated with the activation energy. The latter results empirically follow an exponential function, supporting some earlier statistical and experimental work. The activation energy distribution obtained in the present paper permits improved correlation of chemisorption data in comparison to earlier studies. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper, the minimum-order stable recursive filter design problem is proposed and investigated. This problem is playing an important role in pipeline implementation sin signal processing. Here, the existence of a high-order stable recursive filter is proved theoretically, in which the upper bound for the highest order of stable filters is given. Then the minimum-order stable linear predictor is obtained via solving an optimization problem. In this paper, the popular genetic algorithm approach is adopted since it is a heuristic probabilistic optimization technique and has been widely used in engineering designs. Finally, an illustrative example is sued to show the effectiveness of the proposed algorithm.
Resumo:
This paper discusses an object-oriented neural network model that was developed for predicting short-term traffic conditions on a section of the Pacific Highway between Brisbane and the Gold Coast in Queensland, Australia. The feasibility of this approach is demonstrated through a time-lag recurrent network (TLRN) which was developed for predicting speed data up to 15 minutes into the future. The results obtained indicate that the TLRN is capable of predicting speed up to 5 minutes into the future with a high degree of accuracy (90-94%). Similar models, which were developed for predicting freeway travel times on the same facility, were successful in predicting travel times up to 15 minutes into the future with a similar degree of accuracy (93-95%). These results represent substantial improvements on conventional model performance and clearly demonstrate the feasibility of using the object-oriented approach for short-term traffic prediction. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Purpose. To conduct a controlled trial of traditional and problem-based learning (PBL) methods of teaching epidemiology. Method. All second-year medical students (n = 136) at The University of Western Australia Medical School were offered the chance to participate in a randomized controlled trial of teaching methods fur an epidemiology course. Students who consented to participate (n = 80) were randomly assigned to either a PBL or a traditional course. Students who did not consent or did not return the consent form (n = 56) were assigned to the traditional course, Students in both streams took identical quizzes and exams. These scores, a collection of semi-quantitative feedback from all students, and a qualitative analysis of interviews with a convenience sample of six students from each stream were compared. Results. There was no significant difference in performances on quizzes or exams between PBL and traditional students. Students using PBL reported a stronger grasp of epidemiologic principles, enjoyed working with a group, and, at the end of the course, were more enthusiastic about epidemiology and its professional relevance to them than were students in the traditional course. PBL students worked more steadily during the semester but spent only marginally more time on the epidemiology course overall. Interviews corroborated these findings. Non-consenting students were older (p < 0.02) and more likely to come from non-English-speaking backgrounds (p < 0.005). Conclusions. PBL provides an academically equivalent but personally far richer learning experience. The adoption of PBL approaches to medical education makes it important to study whether PBL presents particular challenges for students whose first language is not the language of instruction.